EulerOS Virtualization 2.10.0 : kernel (EulerOS-SA-2024-2120)

high Nessus Plugin ID 205827

Synopsis

The remote EulerOS Virtualization host is missing multiple security updates.

Description

According to the versions of the kernel packages installed, the EulerOS Virtualization installation on the remote host is affected by the following vulnerabilities :

In the Linux kernel, the following vulnerability has been resolved: Input: appletouch - initialize work before device registration Syzbot has reported warning in __flush_work(). This warning is caused by work- func == NULL, which means missing work initialization. This may happen, since input_dev-close() calls cancel_work_sync(dev-work), but dev-work initalization happens _after_ input_register_device() call. So this patch moves dev-work initialization before registering input device(CVE-2021-46932)

In the Linux kernel, the following vulnerability has been resolved: kyber: fix out of bounds access when preempted __blk_mq_sched_bio_merge() gets the ctx and hctx for the current CPU and passes the hctx to
-bio_merge(). kyber_bio_merge() then gets the ctx for the current CPU again and uses that to get the corresponding Kyber context in the passed hctx. However, the thread may be preempted between the two calls to blk_mq_get_ctx(), and the ctx returned the second time may no longer correspond to the passed hctx.
This 'works' accidentally most of the time, but it can cause us to read garbage if the second ctx came from an hctx with more ctx's than the first one (i.e., if ctx-index_hw[hctx-type] hctx- nr_ctx).(CVE-2021-46984)

In the Linux kernel, the following vulnerability has been resolved: ethernet:enic: Fix a use after free bug in enic_hard_start_xmit In enic_hard_start_xmit, it calls enic_queue_wq_skb(). Inside enic_queue_wq_skb, if some error happens, the skb will be freed by dev_kfree_skb(skb). But the freed skb is still used in skb_tx_timestamp(skb). My patch makes enic_queue_wq_skb() return error and goto spin_unlock() incase of error.(CVE-2021-46998)

In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: free queued packets when closing socket As reported by syzbot [1], there is a memory leak while closing the socket. We partially solved this issue with commit ac03046ece2b ('vsock/virtio: free packets during the socket release'), but we forgot to drain the RX queue when the socket is definitely closed by the scheduled work. To avoid future issues, let's use the new virtio_transport_remove_sock() to drain the RX queue before removing the socket from the af_vsock lists calling vsock_remove_sock().(CVE-2021-47024)

In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Return CQE error if invalid lkey was supplied RXE is missing update of WQE status in LOCAL_WRITE failures. This caused the following kernel panic if someone sent an atomic operation with an explicitly wrong lkey.(CVE-2021-47076)

In the Linux kernel, the following vulnerability has been resolved: scsi: qedf: Add pointer checks in qedf_update_link_speed() The following trace was observed: [ 14.042059] Call Trace: [ 14.042061] IRQ [ 14.042068] qedf_link_update+0x144/0x1f0 [qedf] [ 14.042117] qed_link_update+0x5c/0x80 [qed] [ 14.042135] qed_mcp_handle_link_change+0x2d2/0x410 [qed] [ 14.042155] ? qed_set_ptt+0x70/0x80 [qed] [ 14.042170] ? qed_set_ptt+0x70/0x80 [qed] [ 14.042186] ? qed_rd+0x13/0x40 [qed] [ 14.042205] qed_mcp_handle_events+0x437/0x690 [qed] [ 14.042221] ? qed_set_ptt+0x70/0x80 [qed] [ 14.042239] qed_int_sp_dpc+0x3a6/0x3e0 [qed] [ 14.042245] tasklet_action_common.isra.14+0x5a/0x100 [ 14.042250]
__do_softirq+0xe4/0x2f8 [ 14.042253] irq_exit+0xf7/0x100 [ 14.042255] do_IRQ+0x7f/0xd0 [ 14.042257] common_interrupt+0xf/0xf [ 14.042259] /IRQ API qedf_link_update() is getting called from QED but by that time shost_data is not initialised. This results in a NULL pointer dereference when we try to dereference shost_data while updating supported_speeds. Add a NULL pointer check before dereferencing shost_dat(CVE-2021-47077)

In the Linux kernel, the following vulnerability has been resolved: x86/kvm: Teardown PV features on boot CPU as well Various PV features (Async PF, PV EOI, steal time) work through memory shared with hypervisor and when we restore from hibernation we must properly teardown all these features to make sure hypervisor doesn't write to stale locations after we jump to the previously hibernated kernel (which can try to place anything there). For secondary CPUs the job is already done by kvm_cpu_down_prepare(), register syscore ops to do the same for boot CPU.(CVE-2021-47112)

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix a use-after-free looks like we forget to set ttm-sg to NULL.(CVE-2021-47142)

In the Linux kernel, the following vulnerability has been resolved: drm/amd/amdgpu: fix refcount leak [Why] the gem object rfb-base.obj[0] is get according to num_planes in amdgpufb_create, but is not put according to num_planes [How] put rfb-base.obj[0] in amdgpu_fbdev_destroy according to num_planes(CVE-2021-47144)

In the Linux kernel, the following vulnerability has been resolved: i2c: i801: Don't generate an interrupt on bus reset Now that the i2c-i801 driver supports interrupts, setting the KILL bit in a attempt to recover from a timed out transaction triggers an interrupt. Unfortunately, the interrupt handler (i801_isr) is not prepared for this situation and will try to process the interrupt as if it was signaling the end of a successful transaction. In the case of a block transaction, this can result in an out-of- range memory access.(CVE-2021-47153)

n the Linux kernel, the following vulnerability has been resolved: tipc: skb_linearize the head skb when reassembling msgs It's not a good idea to append the frag skb to a skb's frag_list if the frag_list already has skbs from elsewhere, such as this skb was created by pskb_copy() where the frag_list was cloned (all the skbs in it were skb_get'ed) and shared by multiple skbs. However, the new appended frag skb should have been only seen by the current skb. Otherwise, it will cause use after free crashes as this appended frag skb are seen by multiple skbs but it only got skb_get called once. The same thing happens with a skb updated by pskb_may_pull() with a skb_cloned skb.(CVE-2021-47162)

In the Linux kernel, the following vulnerability has been resolved: tipc: wait and exit until all work queues are done On some host, a crash could be triggered simply by repeating these commands several times:
# modprobe tipc # tipc bearer enable media udp name UDP1 localip 127.0.0.1 # rmmod tipc [] BUG: unable to handle kernel paging request at ffffffffc096bb00 [] Workqueue: events 0xffffffffc096bb00 [] Call Trace: [] ? process_one_work+0x1a7/0x360 [] ? worker_thread+0x30/0x390 [] ? create_worker+0x1a0/0x1a0 [] ? kthread+0x116/0x130 [] ? kthread_flush_work_fn+0x10/0x10 [] ? ret_from_fork+0x35/0x40 When removing the TIPC module, the UDP tunnel sock will be delayed to release in a work queue as sock_release() can't be done in rtnl_lock(). If the work queue is schedule to run after the TIPC module is removed, kernel will crash as the work queue function cleanup_beareri() code no longer exists when trying to invoke it. To fix it, this patch introduce a member wq_count in tipc_net to track the numbers of work queues in schedule, and wait and exit until all work queues are done in tipc_exit_net().(CVE-2021-47163)

In the Linux kernel, the following vulnerability has been resolved: NFS: Don't corrupt the value of pg_bytes_written in nfs_do_recoalesce() The value of mirror-pg_bytes_written should only be updated after a successful attempt to flush out the requests on the list.(CVE-2021-47166)

In the Linux kernel, the following vulnerability has been resolved:NFS: Fix an Oopsable condition in
__nfs_pageio_add_request().Ensure that nfs_pageio_error_cleanup() resets the mirror array contents,so that the structure reflects the fact that it is now empty.Also change the test in nfs_pageio_do_add_request() to be more robust by checking whether or not the list is empty rather than relying on the value of pg_count.(CVE-2021-47167)

In the Linux kernel, the following vulnerability has been resolved:NFS: fix an incorrect limit in filelayout_decode_layout().The 'sizeof(struct nfs_fh)' is two bytes too large and could lead to memory corruption. It should be NFS_MAXFHSIZE because that's the sizethe -data[] buffer. I reversed the size of the arguments to put the variable on the left.(CVE-2021-47168)

In the Linux kernel, the following vulnerability has been resolved: USB: usbfs: Don't WARN about excessively large memory allocations Syzbot found that the kernel generates a WARNing if the user tries to submit a bulk transfer through usbfs with a buffer that is way too large. This isn't a bug in the kernel;
it's merely an invalid request from the user and the usbfs code does handle it correctly. In theory the same thing can happen with async transfers, or with the packet descriptor table for isochronous transfers.
To prevent the MM subsystem from complaining about these bad allocation requests, add the __GFP_NOWARN flag to the kmalloc calls for these buffers.(CVE-2021-47170)

In the Linux kernel, the following vulnerability has been resolved: net: usb: fix memory leak in smsc75xx_bind Syzbot reported memory leak in smsc75xx_bind(). The problem was is non-freed memory in case of errors after memory allocation.(CVE-2021-47171)

In the Linux kernel, the following vulnerability has been resolved: misc/uss720: fix memory leak in uss720_probe uss720_probe forgets to decrease the refcount of usbdev in uss720_probe. Fix this by decreasing the refcount of usbdev by usb_put_dev.(CVE-2021-47173)

In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix scsi_mode_sense() buffer length handling Several problems exist with scsi_mode_sense() buffer length handling: 1) The allocation length field of the MODE SENSE(10) command is 16-bits, occupying bytes 7 and 8 of the CDB. With this command, access to mode pages larger than 255 bytes is thus possible. However, the CDB allocation length field is set by assigning len to byte 8 only, thus truncating buffer length larger than 255. 2) If scsi_mode_sense() is called with len smaller than 8 with sdev-use_10_for_ms set, or smaller than 4 otherwise, the buffer length is increased to 8 and 4 respectively, and the buffer is zero filled with these increased values, thus corrupting the memory following the buffer. Fix these 2 problems by using put_unaligned_be16() to set the allocation length field of MODE SENSE(10) CDB and by returning an error when len is too small. Furthermore, if len is larger than 255B, always try MODE SENSE(10) first, even if the device driver did not set sdev-use_10_for_ms. In case of invalid opcode error for MODE SENSE(10), access to mode pages larger than 255 bytes are not retried using MODE SENSE(6). To avoid buffer length overflows for the MODE_SENSE(10) case, check that len is smaller than 65535 bytes. While at it, also fix the folowing: * Use get_unaligned_be16() to retrieve the mode data length and block descriptor length fields of the mode sense reply header instead of using an open coded calculation. * Fix the kdoc dbd argument explanation: the DBD bit stands for Disable Block Descriptor, which is the opposite of what the dbd argument description was.(CVE-2021-47182)

In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix link down processing to address NULL pointer dereference If an FC link down transition while PLOGIs are outstanding to fabric well known addresses, outstanding ABTS requests may result in a NULL pointer dereference. Driver unload requests may hang with repeated '2878' log messages. The Link down processing results in ABTS requests for outstanding ELS requests. The Abort WQEs are sent for the ELSs before the driver had set the link state to down. Thus the driver is sending the Abort with the expectation that an ABTS will be sent on the wire. The Abort request is stalled waiting for the link to come up. In some conditions the driver may auto-complete the ELSs thus if the link does come up, the Abort completions may reference an invalid structure. Fix by ensuring that Abort set the flag to avoid link traffic if issued due to conditions where the link failed.(CVE-2021-47183)

In the Linux kernel, the following vulnerability has been resolved: cfg80211: call cfg80211_stop_ap when switch from P2P_GO type If the userspace tools switch from NL80211_IFTYPE_P2P_GO to NL80211_IFTYPE_ADHOC via send_msg(NL80211_CMD_SET_INTERFACE), it does not call the cleanup cfg80211_stop_ap(), this leads to the initialization of in-use data. For example, this path re-init the sdata-assigned_chanctx_list while it is still an element of assigned_vifs list, and makes that linked list corrupt.(CVE-2021-47194)

In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix list_add() corruption in lpfc_drain_txq() When parsing the txq list in lpfc_drain_txq(), the driver attempts to pass the requests to the adapter. If such an attempt fails, a local 'fail_msg' string is set and a log message output. The job is then added to a completions list for cancellation. Processing of any further jobs from the txq list continues, but since 'fail_msg' remains set, jobs are added to the completions list regardless of whether a wqe was passed to the adapter. If successfully added to txcmplq, jobs are added to both lists resulting in list corruption. Fix by clearing the fail_msg string after adding a job to the completions list. This stops the subsequent jobs from being added to the completions list unless they had an appropriate failure.(CVE-2021-47203)

In the Linux kernel, the following vulnerability has been resolved: usb: typec: tipd: Remove WARN_ON in tps6598x_block_read Calling tps6598x_block_read with a higher than allowed len can be handled by just returning an error. There's no need to crash systems with panic-on-warn enabled.(CVE-2021-47210)

In the Linux kernel, the following vulnerability has been resolved: x86/hyperv: Fix NULL deref in set_hv_tscchange_cb() if Hyper-V setup fails Check for a valid hv_vp_index array prior to derefencing hv_vp_index when setting Hyper-V's TSC change callback. If Hyper-V setup failed in hyperv_init(), the kernel will still report that it's running under Hyper-V, but will have silently disabled nearly all functionality. BUG: kernel NULL pointer dereference, address: 0000000000000010 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 4 PID: 1 Comm: swapper/0 Not tainted 5.15.0-rc2+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:set_hv_tscchange_cb+0x15/0xa0 Code: 8b 04 82 8b 15 12 17 85 01 48 c1 e0 20 48 0d ee 00 01 00 f6 c6 08 ... Call Trace: kvm_arch_init+0x17c/0x280 kvm_init+0x31/0x330 vmx_init+0xba/0x13a do_one_initcall+0x41/0x1c0 kernel_init_freeable+0x1f2/0x23b kernel_init+0x16/0x120 ret_from_fork+0x22/0x30(CVE-2021-47217)

In the Linux kernel, the following vulnerability has been resolved: nvme-rdma: destroy cm id before destroy qp to avoid use after free We should always destroy cm_id before destroy qp to avoid to get cma event after qp was destroyed, which may lead to use after free. In RDMA connection establishment error flow, don't destroy qp in cm event handler.Just report cm_error to upper level, qp will be destroy in nvme_rdma_alloc_queue() after destroy cm id.(CVE-2021-47378)

In the Linux kernel, the following vulnerability has been resolved: tty: Fix out-of-bound vmalloc access in imageblit This issue happens when a userspace program does an ioctl FBIOPUT_VSCREENINFO passing the fb_var_screeninfo struct containing only the fields xres, yres, and bits_per_pixel with values. If this struct is the same as the previous ioctl, the vc_resize() detects it and doesn't call the resize_screen(), leaving the fb_var_screeninfo incomplete. And this leads to the updatescrollmode() calculates a wrong value to fbcon_display-vrows, which makes the real_y() return a wrong value of y, and that value, eventually, causes the imageblit to access an out-of-bound address value. To solve this issue I made the resize_screen() be called even if the screen does not need any resizing, so it will 'fix and fill' the fb_var_screeninfo independently.(CVE-2021-47383)

In the Linux kernel, the following vulnerability has been resolved: nvmem: Fix shift-out-of-bound (UBSAN) with byte size cells If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic *p = GENMASK((cell-nbits%BITS_PER_BYTE) - 1, 0); will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we subtract one from that making a large number that is then shifted more than the number of bits that fit into an unsigned long. UBSAN reports this problem: UBSAN: shift-out-of-bounds in drivers vmem/core.c:1386:8 shift exponent 64 is too large for 64-bit type 'unsigned long' CPU: 6 PID: 7 Comm:
kworker/u16:0 Not tainted 5.15.0-rc3+ #9 Hardware name: Google Lazor (rev3+) with KB Backlight (DT) Workqueue: events_unbound deferred_probe_work_func.(CVE-2021-47497)

In the Linux kernel, the following vulnerability has been resolved:net: sched: fix possible refcount leak in tc_new_tfilter().tfilter_put need to be called to put the refount got by tp-ops-get to avoid possible refcount leak when chain-tmplt_ops != NULL and chain-tmplt_ops != tp- ops.(CVE-2022-48639)

In the Linux kernel, the following vulnerability has been resolved:nvme-tcp: fix UAF when detecting digest errors.We should also bail from the io_work loop when we set rd_enabled to true,so we don't attempt to read data from the socket when the TCP stream is already out-of-sync or corrupted.(CVE-2022-48686)

In the Linux kernel, the following vulnerability has been resolved:i40e: Fix kernel crash during module removal.The driver incorrectly frees client instance and subsequent i40e module removal leads to kernel crash.(CVE-2022-48688)

In the Linux kernel, the following vulnerability has been resolved: scsi: mpt3sas: Fix use-after-free warning Fix the following use-after-free warning which is observed during controller reset: refcount_t:
underflow; use-after-free.(CVE-2022-48695)

In the Linux kernel, the following vulnerability has been resolved: nvmet: fix a use-after-free Fix the following use-after-free complaint triggered by blktests nvme/004: BUG: KASAN: user-memory-access in blk_mq_complete_request_remote(CVE-2022-48697)

In the Linux kernel, the following vulnerability has been resolved:ALSA: usb-audio: Fix an out-of-bounds bug in __snd_usb_parse_audio_interface().There may be a bad USB audio device with a USB ID of (0x04fa, 0x4201) and the number of it's interfaces less than 4, an out-of-bounds read bug occurs when parsing the interface descriptor for this device.Fix this by checking the number of interfaces.(CVE-2022-48701)

In the Linux kernel, the following vulnerability has been resolved: RDMA/srp: Do not call scsi_done() from srp_abort() After scmd_eh_abort_handler() has called the SCSI LLD eh_abort_handler callback, it performs one of the following actions: * Call scsi_queue_insert(). * Call scsi_finish_command(). * Call scsi_eh_scmd_add(). Hence, SCSI abort handlers must not call scsi_done(). Otherwise all the above actions would trigger a use-after-free. Hence remove the scsi_done() call from srp_abort(). Keep the srp_free_req() call before returning SUCCESS because we may not see the command again if SUCCESS is returned.(CVE-2023-52515)

In the Linux kernel, the following vulnerability has been resolved: ipv4, ipv6: Fix handling of transhdrlen in __ip{,6}_append_data() Including the transhdrlen in length is a problem when the packet is partially filled (e.g. something like send(MSG_MORE) happened previously) when appending to an IPv4 or IPv6 packet as we don't want to repeat the transport header or account for it twice. This can happen under some circumstances, such as splicing into an L2TP socket. The symptom observed is a warning in
__ip6_append_data(): WARNING: CPU: 1 PID: 5042 at net/ipv6/ip6_output.c:1800
__ip6_append_data.isra.0+0x1be8/0x47f0 net/ipv6/ip6_output.c:1800 that occurs when MSG_SPLICE_PAGES is used to append more data to an already partially occupied skbuff. The warning occurs when 'copy' is larger than the amount of data in the message iterator. This is because the requested length includes the transport header length when it shouldn't. This can be triggered by, for example: sfd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_L2TP); bind(sfd, ...); // ::1 connect(sfd, ...); // ::1 port 7 send(sfd, buffer, 4100, MSG_MORE); sendfile(sfd, dfd, NULL, 1024); Fix this by only adding transhdrlen into the length if the write queue is empty in l2tp_ip6_sendmsg(), analogously to how UDP does things. l2tp_ip_sendmsg() looks like it won't suffer from this problem as it builds the UDP packet itself.(CVE-2023-52527)

In the Linux kernel, the following vulnerability has been resolved: IB/ipoib: Fix mcast list locking Releasing the `priv-lock` while iterating the `priv-multicast_list` in `ipoib_mcast_join_task()` opens a window for `ipoib_mcast_dev_flush()` to remove the items while in the middle of iteration. If the mcast is removed while the lock was dropped, the for loop spins forever resulting in a hard lockup(CVE-2023-52587)

In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: Fix potential array- index-out-of-bounds read in ath9k_htc_txstatus() Fix an array-index-out-of-bounds read in ath9k_htc_txstatus(). The bug occurs when txs-cnt, data from a URB provided by a USB device, is bigger than the size of the array txs-txstatus, which is HTC_MAX_TX_STATUS. WARN_ON() already checks it, but there is no bug handling code after the check. Make the function return if that is the case. Found by a modified version of syzkaller. UBSAN: array-index-out-of-bounds in htc_drv_txrx.c index 13 is out of range for type '__wmi_event_txstatus [12]' Call Trace: ath9k_htc_txstatus ath9k_wmi_event_tasklet tasklet_action_common __do_softirq irq_exit_rxu sysvec_apic_timer_interrupt(CVE-2023-52594)

In the Linux kernel, the following vulnerability has been resolved: KVM: s390: fix setting of fpc register kvm_arch_vcpu_ioctl_set_fpu() allows to set the floating point control (fpc) register of a guest cpu. The new value is tested for validity by temporarily loading it into the fpc register. This may lead to corruption of the fpc register of the host process: if an interrupt happens while the value is temporarily loaded into the fpc register, and within interrupt context floating point or vector registers are used, the current fp/vx registers are saved with save_fpu_regs() assuming they belong to user space and will be loaded into fp/vx registers when returning to user space. test_fp_ctl() restores the original user space / host process fpc register value, however it will be discarded, when returning to user space. In result the host process will incorrectly continue to run with the value that was supposed to be used for a guest cpu.
Fix this by simply removing the test. There is another test right before the SIE context is entered which will handles invalid values. This results in a change of behaviour: invalid values will now be accepted instead of that the ioctl fails with -EINVAL. This seems to be acceptable, given that this interface is most likely not used anymore, and this is in addition the same behaviour implemented with the memory mapped interface (replace invalid values with zero) - see sync_regs() in kvm-s390.c.(CVE-2023-52597)

In the Linux kernel, the following vulnerability has been resolved:crypto: scomp - fix req-dst buffer overflow.The req-dst buffer size should be checked before copying from the scomp_scratch-dst to avoid req-dst buffer overflow problem.(CVE-2023-52612)

In the Linux kernel, the following vulnerability has been resolved: hwrng: core - Fix page fault dead lock on mmap-ed hwrng There is a dead-lock in the hwrng device read path. This triggers when the user reads from /dev/hwrng into memory also mmap-ed from /dev/hwrng. The resulting page fault triggers a recursive read which then dead-locks. Fix this by using a stack buffer when calling copy_to_user.(CVE-2023-52615)

In the Linux kernel, the following vulnerability has been resolved: pstore/ram: Fix crash when setting number of cpus to an odd number When the number of cpu cores is adjusted to 7 or other odd numbers, the zone size will become an odd number. The address of the zone will become: addr of zone0 = BASE addr of zone1 = BASE + zone_size addr of zone2 = BASE + zone_size*2 ... The address of zone1/3/5/7 will be mapped to non-alignment va. Eventually crashes will occur when accessing these va. So, use ALIGN_DOWN() to make sure the zone size is even to avoid this bug.(CVE-2023-52619)

In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: disallow timeout for anonymous sets Never used from userspace, disallow these parameters.(CVE-2023-52620)

In the Linux kernel, the following vulnerability has been resolved: ext4: avoid online resizing failures due to oversized flex bg When we online resize an ext4 filesystem with a oversized flexbg_size, mkfs.ext4
-F -G 67108864 $dev -b 4096 100M mount $dev $dir resize2fs $dev 16G the following WARN_ON is triggered:
================================================================== WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550 Modules linked in: sg(E) CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314 RIP: 0010:__alloc_pages+0x411/0x550 Call Trace: TASK
__kmalloc_large_node+0xa2/0x200 __kmalloc+0x16e/0x290 ext4_resize_fs+0x481/0xd80
__ext4_ioctl+0x1616/0x1d90 ext4_ioctl+0x12/0x20 __x64_sys_ioctl+0xf0/0x150 do_syscall_64+0x3b/0x90 ================================================================== This is because flexbg_size is too large and the size of the new_group_data array to be allocated exceeds MAX_ORDER. Currently, the minimum value of MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding maximum number of groups that can be allocated is: (PAGE_SIZE MAX_ORDER) / sizeof(struct ext4_new_group_data) 21845 And the value that is down-aligned to the power of 2 is 16384. Therefore, this value is defined as MAX_RESIZE_BG, and the number of groups added each time does not exceed this value during resizing, and is added multiple times to complete the online resizing. The difference is that the metadata in a flex_bg may be more dispersed.(CVE-2023-52622)

In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix a suspicious RCU usage warning I received the following warning while running cthon against an ontap server running pNFS: [ 57.202521] ============================= [ 57.202522] WARNING: ...

Please note that the description has been truncated due to length. Please refer to vendor advisory for the full description.

Tenable has extracted the preceding description block directly from the EulerOS Virtualization kernel security advisory.

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.

Solution

Update the affected kernel packages.

See Also

http://www.nessus.org/u?2417855d

Plugin Details

Severity: High

ID: 205827

File Name: EulerOS_SA-2024-2120.nasl

Version: 1.5

Type: local

Published: 8/19/2024

Updated: 9/25/2025

Supported Sensors: Nessus

Risk Information

VPR

Risk Factor: Medium

Score: 6.7

CVSS v2

Risk Factor: Medium

Base Score: 6.8

Temporal Score: 5.3

Vector: CVSS2#AV:L/AC:L/Au:S/C:C/I:C/A:C

CVSS Score Source: CVE-2024-27395

CVSS v3

Risk Factor: High

Base Score: 7.8

Temporal Score: 7

Vector: CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Temporal Vector: CVSS:3.0/E:P/RL:O/RC:C

Vulnerability Information

CPE: cpe:/o:huawei:euleros:uvp:2.10.0, p-cpe:/a:huawei:euleros:kernel-tools-libs, p-cpe:/a:huawei:euleros:kernel-tools, p-cpe:/a:huawei:euleros:python3-perf, p-cpe:/a:huawei:euleros:kernel, p-cpe:/a:huawei:euleros:kernel-abi-stablelists

Required KB Items: Host/local_checks_enabled, Host/cpu, Host/EulerOS/release, Host/EulerOS/rpm-list, Host/EulerOS/uvp_version

Exploit Available: true

Exploit Ease: Exploits are available

Patch Publication Date: 8/19/2024

Vulnerability Publication Date: 12/8/2021

Reference Information

CVE: CVE-2021-46932, CVE-2021-46984, CVE-2021-46998, CVE-2021-47024, CVE-2021-47076, CVE-2021-47077, CVE-2021-47112, CVE-2021-47142, CVE-2021-47153, CVE-2021-47162, CVE-2021-47163, CVE-2021-47166, CVE-2021-47167, CVE-2021-47168, CVE-2021-47170, CVE-2021-47171, CVE-2021-47173, CVE-2021-47182, CVE-2021-47183, CVE-2021-47194, CVE-2021-47203, CVE-2021-47210, CVE-2021-47217, CVE-2021-47378, CVE-2021-47383, CVE-2021-47497, CVE-2022-48639, CVE-2022-48686, CVE-2022-48688, CVE-2022-48695, CVE-2022-48697, CVE-2022-48701, CVE-2023-52515, CVE-2023-52527, CVE-2023-52587, CVE-2023-52594, CVE-2023-52597, CVE-2023-52612, CVE-2023-52615, CVE-2023-52619, CVE-2023-52620, CVE-2023-52622, CVE-2023-52623, CVE-2023-52652, CVE-2023-52653, CVE-2024-23307, CVE-2024-24855, CVE-2024-26614, CVE-2024-26633, CVE-2024-26635, CVE-2024-26640, CVE-2024-26641, CVE-2024-26642, CVE-2024-26645, CVE-2024-26663, CVE-2024-26668, CVE-2024-26669, CVE-2024-26671, CVE-2024-26675, CVE-2024-26679, CVE-2024-26686, CVE-2024-26687, CVE-2024-26704, CVE-2024-26733, CVE-2024-26735, CVE-2024-26739, CVE-2024-26740, CVE-2024-26743, CVE-2024-26744, CVE-2024-26752, CVE-2024-26759, CVE-2024-26763, CVE-2024-26772, CVE-2024-26773, CVE-2024-26779, CVE-2024-26804, CVE-2024-26805, CVE-2024-26810, CVE-2024-26812, CVE-2024-26828, CVE-2024-26839, CVE-2024-26840, CVE-2024-26845, CVE-2024-26846, CVE-2024-26851, CVE-2024-26852, CVE-2024-26855, CVE-2024-26857, CVE-2024-26859, CVE-2024-26865, CVE-2024-26872, CVE-2024-26875, CVE-2024-26878, CVE-2024-26880, CVE-2024-26882, CVE-2024-26883, CVE-2024-26884, CVE-2024-26886, CVE-2024-26894, CVE-2024-26900, CVE-2024-26901, CVE-2024-26903, CVE-2024-26907, CVE-2024-26920, CVE-2024-26921, CVE-2024-26923, CVE-2024-26931, CVE-2024-26934, CVE-2024-26958, CVE-2024-26960, CVE-2024-26961, CVE-2024-26973, CVE-2024-26974, CVE-2024-26976, CVE-2024-26982, CVE-2024-26993, CVE-2024-27008, CVE-2024-27010, CVE-2024-27011, CVE-2024-27013, CVE-2024-27014, CVE-2024-27019, CVE-2024-27020, CVE-2024-27043, CVE-2024-27046, CVE-2024-27059, CVE-2024-27073, CVE-2024-27075, CVE-2024-27388, CVE-2024-27395, CVE-2024-27437, CVE-2024-35950