USN-1212-1 : linux-ti-omap4 vulnerabilities

high Nessus Plugin ID 56257
New! Vulnerability Priority Rating (VPR)

Tenable calculates a dynamic VPR for every vulnerability. VPR combines vulnerability information with threat intelligence and machine learning algorithms to predict which vulnerabilities are most likely to be exploited in attacks. Read more about what VPR is and how it is different from CVSS.

VPR Score: 6.7

Synopsis

The remote Ubuntu host is missing one or more security-related patches.

Description

Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463)

Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017)

It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079)

Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080)

Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160)

Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534)

Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173)

Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180)

Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182)

Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493)

Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495)

Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577)

Phil Oester discovered that the network bonding system did not correctly handle large queues. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1581)

Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593)

Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748)

Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022)

Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746)

Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770)

Ben Greear discovered that CIFS did not correctly handle direct I/O.
A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-1771)

Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833)

Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service.
(CVE-2011-2484)

It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy.
(CVE-2011-2492)

Sami Liedes discovered that ext4 did not correctly handle missing root inodes. A local attacker could trigger the mount of a specially crafted filesystem to cause the system to crash, leading to a denial of service. (CVE-2011-2493)

It was discovered that GFS2 did not correctly check block sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2689)

Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service.
(CVE-2011-2699)

The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)

Solution

Update the affected package(s).

See Also

http://www.ubuntu.com/usn/usn-1212-1/

Plugin Details

Severity: High

ID: 56257

File Name: ubuntu_USN-1212-1.nasl

Version: 1.7

Type: local

Agent: unix

Published: 9/22/2011

Updated: 10/16/2019

Dependencies: ssh_get_info.nasl

Risk Information

Risk Factor: High

VPR Score: 6.7

CVSS v2.0

Base Score: 7.8

Vector: AV:N/AC:L/Au:N/C:N/I:N/A:C

Vulnerability Information

CPE: cpe:/o:canonical:ubuntu_linux

Required KB Items: Host/Ubuntu, Host/Ubuntu/release, Host/Debian/dpkg-l

Exploit Available: true

Exploit Ease: Exploits are available

Patch Publication Date: 9/21/2011

Reference Information

CVE: CVE-2011-0463, CVE-2011-1017, CVE-2011-1020, CVE-2011-1078, CVE-2011-1079, CVE-2011-1080, CVE-2011-1160, CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-1173, CVE-2011-1180, CVE-2011-1182, CVE-2011-1493, CVE-2011-1494, CVE-2011-1495, CVE-2011-1577, CVE-2011-1581, CVE-2011-1593, CVE-2011-1598, CVE-2011-1745, CVE-2011-1746, CVE-2011-1748, CVE-2011-1770, CVE-2011-1771, CVE-2011-1833, CVE-2011-2022, CVE-2011-2484, CVE-2011-2492, CVE-2011-2493, CVE-2011-2534, CVE-2011-2689, CVE-2011-2699, CVE-2011-2918

USN: 1212-1