Oracle Linux 9 : kernel (ELSA-2024-2394)

critical Nessus Plugin ID 195036

Synopsis

The remote Oracle Linux host is missing one or more security updates.

Description

The remote Oracle Linux 9 host has packages installed that are affected by multiple vulnerabilities as referenced in the ELSA-2024-2394 advisory.

- An issue was discovered in lib/kobject.c in the Linux kernel before 6.2.3. With root access, an attacker can trigger a race condition that results in a fill_kobj_path out-of-bounds write. (CVE-2023-45863)

- An issue was discovered in drivers/bluetooth/hci_ldisc.c in the Linux kernel 6.2. In hci_uart_tty_ioctl, there is a race condition between HCIUARTSETPROTO and HCIUARTGETPROTO. HCI_UART_PROTO_SET is set before hu->proto is set. A NULL pointer dereference may occur. (CVE-2023-31083)

- A flaw was found in the XFRM subsystem in the Linux kernel. The specific flaw exists within the processing of state filters, which can result in a read past the end of an allocated buffer. This flaw allows a local privileged (CAP_NET_ADMIN) attacker to trigger an out-of-bounds read, potentially leading to an information disclosure. (CVE-2023-39194)

- In the Linux kernel before 6.4.5, drivers/gpu/drm/drm_atomic.c has a use-after-free during a race condition between a nonblocking atomic commit and a driver unload. (CVE-2023-51043)

- A null pointer dereference flaw was found in the hugetlbfs_fill_super function in the Linux kernel hugetlbfs (HugeTLB pages) functionality. This issue may allow a local user to crash the system or potentially escalate their privileges on the system. (CVE-2024-0841)

- In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix stack corruption When tc filters are first added to a net device, the corresponding local port gets bound to an ACL group in the device. The group contains a list of ACLs. In turn, each ACL points to a different TCAM region where the filters are stored. During forwarding, the ACLs are sequentially evaluated until a match is found. One reason to place filters in different regions is when they are added with decreasing priorities and in an alternating order so that two consecutive filters can never fit in the same region because of their key usage. In Spectrum-2 and newer ASICs the firmware started to report that the maximum number of ACLs in a group is more than 16, but the layout of the register that configures ACL groups (PAGT) was not updated to account for that. It is therefore possible to hit stack corruption [1] in the rare case where more than 16 ACLs in a group are required. Fix by limiting the maximum ACL group size to the minimum between what the firmware reports and the maximum ACLs that fit in the PAGT register. Add a test case to make sure the machine does not crash when this condition is hit. [1] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: mlxsw_sp_acl_tcam_group_update+0x116/0x120 [...] dump_stack_lvl+0x36/0x50 panic+0x305/0x330 __stack_chk_fail+0x15/0x20 mlxsw_sp_acl_tcam_group_update+0x116/0x120 mlxsw_sp_acl_tcam_group_region_attach+0x69/0x110 mlxsw_sp_acl_tcam_vchunk_get+0x492/0xa20 mlxsw_sp_acl_tcam_ventry_add+0x25/0xe0 mlxsw_sp_acl_rule_add+0x47/0x240 mlxsw_sp_flower_replace+0x1a9/0x1d0 tc_setup_cb_add+0xdc/0x1c0 fl_hw_replace_filter+0x146/0x1f0 fl_change+0xc17/0x1360 tc_new_tfilter+0x472/0xb90 rtnetlink_rcv_msg+0x313/0x3b0 netlink_rcv_skb+0x58/0x100 netlink_unicast+0x244/0x390 netlink_sendmsg+0x1e4/0x440 ____sys_sendmsg+0x164/0x260 ___sys_sendmsg+0x9a/0xe0 __sys_sendmsg+0x7a/0xc0 do_syscall_64+0x40/0xe0 entry_SYSCALL_64_after_hwframe+0x63/0x6b (CVE-2024-26586)

- Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
(CVE-2024-26609)

- In the Linux kernel, the following vulnerability has been resolved: mm/sparsemem: fix race in accessing memory_section->usage The below race is observed on a PFN which falls into the device memory region with the system memory configuration where PFN's are such that [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end pfn contains the device memory PFN's as well, the compaction triggered will try on the device memory PFN's too though they end up in NOP(because pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When from other core, the section mappings are being removed for the ZONE_DEVICE region, that the PFN in question belongs to, on which compaction is currently being operated is resulting into the kernel crash with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1].
compact_zone() memunmap_pages ------------- --------------- __pageblock_pfn_to_page ...... (a)pfn_valid():
valid_section()//return true (b)__remove_pages()-> sparse_remove_section()-> section_deactivate(): [Free the array ms->usage and set ms->usage = NULL] pfn_section_valid() [Access ms->usage which is NULL] NOTE:
From the above it can be said that the race is reduced to between the pfn_valid()/pfn_section_valid() and the section deactivate with SPASEMEM_VMEMAP enabled. The commit b943f045a9af(mm/sparse: fix kernel crash with pfn_section_valid check) tried to address the same problem by clearing the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns false thus ms->usage is not accessed. Fix this issue by the below steps: a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage. b) RCU protected read side critical section will either return NULL when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage. c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No attempt will be made to access ->usage after this as the SECTION_HAS_MEM_MAP is cleared thus valid_section() return false. Thanks to David/Pavan for their inputs on this patch. [1] https://lore.kernel.org/linux- mm/[email protected]/ On Snapdragon SoC, with the mentioned memory configuration of PFN's as [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of issues daily while testing on a device farm. For this particular issue below is the log. Though the below log is not directly pointing to the pfn_section_valid(){ ms->usage;}, when we loaded this dump on T32 lauterbach tool, it is pointing. [ 540.578056] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 540.578068] Mem abort info: [ 540.578070] ESR = 0x0000000096000005 [ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits [ 540.578077] SET = 0, FnV = 0 [ 540.578080] EA = 0, S1PTW = 0 [ 540.578082] FSC = 0x05: level 1 translation fault [ 540.578085] Data abort info: [ 540.578086] ISV = 0, ISS = 0x00000005 [ 540.578088] CM = 0, WnR = 0 [ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO
-DIT -SSBSBTYPE=--) [ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c [ 540.579454] lr :
compact_zone+0x994/0x1058 [ 540.579460] sp : ffffffc03579b510 [ 540.579463] x29: ffffffc03579b510 x28:
0000000000235800 x27:000000000000000c [ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640 [ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000 [ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140 [ 540.579489] x17:
00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff [ 540.579495] x14: 0000008000000000 x13:
0000000000000000 x12:0000000000000001 [ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440 [ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4 [ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000 ---truncated--- (CVE-2023-52489)

- In the Linux kernel, the following vulnerability has been resolved: HID: sony: Fix a potential memory leak in sony_probe() If an error occurs after a successful usb_alloc_urb() call, usb_free_urb() should be called. (CVE-2023-52529)

- In the Linux kernel, the following vulnerability has been resolved: net/sched: act_ct: fix skb leak and crash on ooo frags act_ct adds skb->users before defragmentation. If frags arrive in order, the last frag's reference is reset in: inet_frag_reasm_prepare skb_morph which is not straightforward. However when frags arrive out of order, nobody unref the last frag, and all frags are leaked. The situation is even worse, as initiating packet capture can lead to a crash[0] when skb has been cloned and shared at the same time. Fix the issue by removing skb_get() before defragmentation. act_ct returns TC_ACT_CONSUMED when defrag failed or in progress. [0]: [ 843.804823] ------------[ cut here ]------------ [ 843.809659] kernel BUG at net/core/skbuff.c:2091! [ 843.814516] invalid opcode: 0000 [#1] PREEMPT SMP [ 843.819296] CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G S 6.7.0-rc3 #2 [ 843.824107] Hardware name: XFUSION 1288H V6/BC13MBSBD, BIOS 1.29 11/25/2022 [ 843.828953] RIP: 0010:pskb_expand_head+0x2ac/0x300 [ 843.833805] Code: 8b 70 28 48 85 f6 74 82 48 83 c6 08 bf 01 00 00 00 e8 38 bd ff ff 8b 83 c0 00 00 00 48 03 83 c8 00 00 00 e9 62 ff ff ff 0f 0b <0f> 0b e8 8d d0 ff ff e9 b3 fd ff ff 81 7c 24 14 40 01 00 00 4c 89 [ 843.843698] RSP: 0018:ffffc9000cce07c0 EFLAGS: 00010202 [ 843.848524] RAX: 0000000000000002 RBX:
ffff88811a211d00 RCX: 0000000000000820 [ 843.853299] RDX: 0000000000000640 RSI: 0000000000000000 RDI:
ffff88811a211d00 [ 843.857974] RBP: ffff888127d39518 R08: 00000000bee97314 R09: 0000000000000000 [ 843.862584] R10: 0000000000000000 R11: ffff8881109f0000 R12: 0000000000000880 [ 843.867147] R13:
ffff888127d39580 R14: 0000000000000640 R15: ffff888170f7b900 [ 843.871680] FS: 0000000000000000(0000) GS:ffff889ffffc0000(0000) knlGS:0000000000000000 [ 843.876242] CS: 0010 DS: 0000 ES: 0000 CR0:
0000000080050033 [ 843.880778] CR2: 00007fa42affcfb8 CR3: 000000011433a002 CR4: 0000000000770ef0 [ 843.885336] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 843.889809] DR3:
0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 843.894229] PKRU: 55555554 [ 843.898539] Call Trace: [ 843.902772] <IRQ> [ 843.906922] ? __die_body+0x1e/0x60 [ 843.911032] ? die+0x3c/0x60 [ 843.915037] ? do_trap+0xe2/0x110 [ 843.918911] ? pskb_expand_head+0x2ac/0x300 [ 843.922687] ? do_error_trap+0x65/0x80 [ 843.926342] ? pskb_expand_head+0x2ac/0x300 [ 843.929905] ? exc_invalid_op+0x50/0x60 [ 843.933398] ? pskb_expand_head+0x2ac/0x300 [ 843.936835] ? asm_exc_invalid_op+0x1a/0x20 [ 843.940226] ? pskb_expand_head+0x2ac/0x300 [ 843.943580] inet_frag_reasm_prepare+0xd1/0x240 [ 843.946904] ip_defrag+0x5d4/0x870 [ 843.950132] nf_ct_handle_fragments+0xec/0x130 [nf_conntrack] [ 843.953334] tcf_ct_act+0x252/0xd90 [act_ct] [ 843.956473] ? tcf_mirred_act+0x516/0x5a0 [act_mirred] [ 843.959657] tcf_action_exec+0xa1/0x160 [ 843.962823] fl_classify+0x1db/0x1f0 [cls_flower] [ 843.966010] ? skb_clone+0x53/0xc0 [ 843.969173] tcf_classify+0x24d/0x420 [ 843.972333] tc_run+0x8f/0xf0 [ 843.975465]
__netif_receive_skb_core+0x67a/0x1080 [ 843.978634] ? dev_gro_receive+0x249/0x730 [ 843.981759]
__netif_receive_skb_list_core+0x12d/0x260 [ 843.984869] netif_receive_skb_list_internal+0x1cb/0x2f0 [ 843.987957] ? mlx5e_handle_rx_cqe_mpwrq_rep+0xfa/0x1a0 [mlx5_core] [ 843.991170] napi_complete_done+0x72/0x1a0 [ 843.994305] mlx5e_napi_poll+0x28c/0x6d0 [mlx5_core] [ 843.997501]
__napi_poll+0x25/0x1b0 [ 844.000627] net_rx_action+0x256/0x330 [ 844.003705] __do_softirq+0xb3/0x29b [ 844.006718] irq_exit_rcu+0x9e/0xc0 [ 844.009672] common_interrupt+0x86/0xa0 [ 844.012537] </IRQ> [ 844.015285] <TASK> [ 844.017937] asm_common_interrupt+0x26/0x40 [ 844.020591] RIP:
0010:acpi_safe_halt+0x1b/0x20 [ 844.023247] Code: ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 65 48 8b 04 25 00 18 03 00 48 8b 00 a8 08 75 0c 66 90 0f 00 2d 81 d0 44 00 fb ---truncated--- (CVE-2023-52610)

- In the Linux kernel, the following vulnerability has been resolved: net: tls: handle backlogging of crypto requests Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our requests to the crypto API, crypto_aead_{encrypt,decrypt} can return -EBUSY instead of -EINPROGRESS in valid situations. For example, when the cryptd queue for AESNI is full (easy to trigger with an artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued to the backlog but still processed. In that case, the async callback will also be called twice: first with err == -EINPROGRESS, which it seems we can just ignore, then with err == 0. Compared to Sabrina's original patch this version uses the new tls_*crypt_async_wait() helpers and converts the EBUSY to EINPROGRESS to avoid having to modify all the error handling paths. The handling is identical. (CVE-2024-26584)

- A use-after-free vulnerability was found in the cxgb4 driver in the Linux kernel. The bug occurs when the cxgb4 device is detaching due to a possible rearming of the flower_stats_timer from the work queue. This flaw allows a local user to crash the system, causing a denial of service condition. (CVE-2023-4133)

- An out-of-bounds access vulnerability involving netfilter was reported and fixed as: f1082dd31fe4 (netfilter: nf_tables: Reject tables of unsupported family); While creating a new netfilter table, lack of a safeguard against invalid nf_tables family (pf) values within `nf_tables_newtable` function enables an attacker to achieve out-of-bounds access. (CVE-2023-6040)

- A null pointer dereference flaw was found in the Linux kernel API for the cryptographic algorithm scatterwalk functionality. This issue occurs when a user constructs a malicious packet with specific socket configuration, which could allow a local user to crash the system or escalate their privileges on the system. (CVE-2023-6176)

- hci_conn_cleanup in net/bluetooth/hci_conn.c in the Linux kernel through 6.2.9 has a use-after-free (observed in hci_conn_hash_flush) because of calls to hci_dev_put and hci_conn_put. There is a double free that may lead to privilege escalation. (CVE-2023-28464)

- A flaw was found in the Netfilter subsystem of the Linux kernel. A race condition between IPSET_CMD_ADD and IPSET_CMD_SWAP can lead to a kernel panic due to the invocation of `__ip_set_put` on a wrong `set`.
This issue may allow a local user to crash the system. (CVE-2023-42756)

- A flaw was found in the filelock_init in fs/locks.c function in the Linux kernel. This issue can lead to host memory exhaustion due to memcg not limiting the number of Portable Operating System Interface (POSIX) file locks. (CVE-2022-0480)

- An out-of-bounds read vulnerability was found in the NVMe-oF/TCP subsystem in the Linux kernel. This issue may allow a remote attacker to send a crafted TCP packet, triggering a heap-based buffer overflow that results in kmalloc data being printed and potentially leaked to the kernel ring buffer (dmesg).
(CVE-2023-6121)

- A Null pointer dereference problem was found in ida_free in lib/idr.c in the Linux Kernel. This issue may allow an attacker using this library to cause a denial of service problem due to a missing check at a function return. (CVE-2023-6915)

- Bluetooth BR/EDR devices with Secure Simple Pairing and Secure Connections pairing in Bluetooth Core Specification 4.2 through 5.4 allow certain man-in-the-middle attacks that force a short key length, and might lead to discovery of the encryption key and live injection, aka BLUFFS. (CVE-2023-24023)

- A flaw was found in the Netfilter subsystem in the Linux kernel. The sctp_mt_check did not validate the flag_count field. This flaw allows a local privileged (CAP_NET_ADMIN) attacker to trigger an out-of-bounds read, leading to a crash or information disclosure. (CVE-2023-39193)

- In the Linux kernel, the following vulnerability has been resolved: net: bridge: use DEV_STATS_INC() syzbot/KCSAN reported data-races in br_handle_frame_finish() [1] This function can run from multiple cpus without mutual exclusion. Adopt SMP safe DEV_STATS_INC() to update dev->stats fields. Handles updates to dev->stats.tx_dropped while we are at it. [1] BUG: KCSAN: data-race in br_handle_frame_finish / br_handle_frame_finish read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 1:
br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189 br_nf_hook_thresh+0x1ed/0x220 br_nf_pre_routing_finish_ipv6+0x50f/0x540 NF_HOOK include/linux/netfilter.h:304 [inline] br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178 br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508 nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline] nf_hook_bridge_pre net/bridge/br_input.c:272 [inline] br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417 __netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417
__netif_receive_skb_one_core net/core/dev.c:5521 [inline] __netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637 process_backlog+0x21f/0x380 net/core/dev.c:5965 __napi_poll+0x60/0x3b0 net/core/dev.c:6527 napi_poll net/core/dev.c:6594 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6727
__do_softirq+0xc1/0x265 kernel/softirq.c:553 run_ksoftirqd+0x17/0x20 kernel/softirq.c:921 smpboot_thread_fn+0x30a/0x4a0 kernel/smpboot.c:164 kthread+0x1d7/0x210 kernel/kthread.c:388 ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 0:
br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189 br_nf_hook_thresh+0x1ed/0x220 br_nf_pre_routing_finish_ipv6+0x50f/0x540 NF_HOOK include/linux/netfilter.h:304 [inline] br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178 br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508 nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline] nf_hook_bridge_pre net/bridge/br_input.c:272 [inline] br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417 __netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417
__netif_receive_skb_one_core net/core/dev.c:5521 [inline] __netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637 process_backlog+0x21f/0x380 net/core/dev.c:5965 __napi_poll+0x60/0x3b0 net/core/dev.c:6527 napi_poll net/core/dev.c:6594 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6727
__do_softirq+0xc1/0x265 kernel/softirq.c:553 do_softirq+0x5e/0x90 kernel/softirq.c:454
__local_bh_enable_ip+0x64/0x70 kernel/softirq.c:381 __raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline] _raw_spin_unlock_bh+0x36/0x40 kernel/locking/spinlock.c:210 spin_unlock_bh include/linux/spinlock.h:396 [inline] batadv_tt_local_purge+0x1a8/0x1f0 net/batman- adv/translation-table.c:1356 batadv_tt_purge+0x2b/0x630 net/batman-adv/translation-table.c:3560 process_one_work kernel/workqueue.c:2630 [inline] process_scheduled_works+0x5b8/0xa30 kernel/workqueue.c:2703 worker_thread+0x525/0x730 kernel/workqueue.c:2784 kthread+0x1d7/0x210 kernel/kthread.c:388 ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 value changed: 0x00000000000d7190 -> 0x00000000000d7191 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 14848 Comm: kworker/u4:11 Not tainted 6.6.0-rc1-syzkaller-00236-gad8a69f361b9 #0 (CVE-2023-52578)

- A NULL pointer dereference vulnerability was found in vmwgfx driver in drivers/gpu/vmxgfx/vmxgfx_execbuf.c in GPU component of Linux kernel with device file '/dev/dri/renderD128 (or Dxxx)'. This flaw allows a local attacker with a user account on the system to gain privilege, causing a denial of service(DoS).
(CVE-2022-38096)

- Improper access control in the Intel(R) Ethernet Controller RDMA driver for linux before version 1.9.30 may allow an unauthenticated user to potentially enable escalation of privilege via network access.
(CVE-2023-25775)

- An issue was discovered in the Linux kernel through 6.5.9. During a race with SQ thread exit, an io_uring/fdinfo.c io_uring_show_fdinfo NULL pointer dereference can occur. (CVE-2023-46862)

- In the Linux kernel, the following vulnerability has been resolved: net: fix possible store tearing in neigh_periodic_work() While looking at a related syzbot report involving neigh_periodic_work(), I found that I forgot to add an annotation when deleting an RCU protected item from a list. Readers use rcu_deference(*np), we need to use either rcu_assign_pointer() or WRITE_ONCE() on writer side to prevent store tearing. I use rcu_assign_pointer() to have lockdep support, this was the choice made in neigh_flush_dev(). (CVE-2023-52522)

- A use-after-free flaw was found in the Linux Kernel due to a race problem in the unix garbage collector's deletion of SKB races with unix_stream_read_generic() on the socket that the SKB is queued on.
(CVE-2023-6531)

- A race condition was found in the GSM 0710 tty multiplexor in the Linux kernel. This issue occurs when two threads execute the GSMIOC_SETCONF ioctl on the same tty file descriptor with the gsm line discipline enabled, and can lead to a use-after-free problem on a struct gsm_dlci while restarting the gsm mux. This could allow a local unprivileged user to escalate their privileges on the system. (CVE-2023-6546)

- A NULL pointer dereference flaw was found in the Linux kernel ipv4 stack. The socket buffer (skb) was assumed to be associated with a device before calling __ip_options_compile, which is not always the case if the skb is re-routed by ipvs. This issue may allow a local user with CAP_NET_ADMIN privileges to crash the system. (CVE-2023-42754)

- An issue was discovered in the Linux kernel through 6.0.10. l2cap_config_req in net/bluetooth/l2cap_core.c has an integer wraparound via L2CAP_CONF_REQ packets. (CVE-2022-45934)

- A use-after-free vulnerability in the Linux kernel's ipv4: igmp component can be exploited to achieve local privilege escalation. A race condition can be exploited to cause a timer be mistakenly registered on a RCU read locked object which is freed by another thread. We recommend upgrading past commit e2b706c691905fe78468c361aaabc719d0a496f1. (CVE-2023-6932)

- In the Linux kernel through 6.2.8, net/bluetooth/hci_sync.c allows out-of-bounds access because amp_init1[] and amp_init2[] are supposed to have an intentionally invalid element, but do not.
(CVE-2023-28866)

- A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation. (CVE-2023-39198)

- In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix memleak when more than 255 elements expired When more than 255 elements expired we're supposed to switch to a new gc container structure. This never happens: u8 type will wrap before reaching the boundary and nft_trans_gc_space() always returns true. This means we recycle the initial gc container structure and lose track of the elements that came before. While at it, don't deref 'gc' after we've passed it to call_rcu. (CVE-2023-52581)

- A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. The nft_setelem_catchall_deactivate() function checks whether the catch-all set element is active in the current generation instead of the next generation before freeing it, but only flags it inactive in the next generation, making it possible to free the element multiple times, leading to a double free vulnerability. We recommend upgrading past commit b1db244ffd041a49ecc9618e8feb6b5c1afcdaa7. (CVE-2024-1085)

- In the Linux kernel, the following vulnerability has been resolved: tls: fix race between async notify and socket close The submitting thread (one which called recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete() so any code past that point risks touching already freed data. Try to avoid the locking and extra flags altogether. Have the main thread hold an extra reference, this way we can depend solely on the atomic ref counter for synchronization. Don't futz with reiniting the completion, either, we are now tightly controlling when completion fires. (CVE-2024-26583)

- A heap out-of-bounds write vulnerability in the Linux kernel's Performance Events system component can be exploited to achieve local privilege escalation. A perf_event's read_size can overflow, leading to an heap out-of-bounds increment or write in perf_read_group(). We recommend upgrading past commit 382c27f4ed28f803b1f1473ac2d8db0afc795a1b. (CVE-2023-6931)

- A flaw was found in the Netfilter subsystem in the Linux kernel. The nfnl_osf_add_callback function did not validate the user mode controlled opt_num field. This flaw allows a local privileged (CAP_NET_ADMIN) attacker to trigger an out-of-bounds read, leading to a crash or information disclosure. (CVE-2023-39189)

- In the Linux kernel, the following vulnerability has been resolved: i2c: i801: Fix block process call transactions According to the Intel datasheets, software must reset the block buffer index twice for block process call transactions: once before writing the outgoing data to the buffer, and once again before reading the incoming data from the buffer. The driver is currently missing the second reset, causing the wrong portion of the block buffer to be read. (CVE-2024-26593)

- An issue was discovered in the Linux kernel before 6.6.8. do_vcc_ioctl in net/atm/ioctl.c has a use-after- free because of a vcc_recvmsg race condition. (CVE-2023-51780)

- In the Linux kernel, the following vulnerability has been resolved: tls: fix race between tx work scheduling and socket close Similarly to previous commit, the submitting thread (recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete(). Reorder scheduling the work before calling complete(). This seems more logical in the first place, as it's the inverse order of what the submitting thread will do. (CVE-2024-26585)

- Bluetooth legacy BR/EDR PIN code pairing in Bluetooth Core Specification 1.0B through 5.2 may permit an unauthenticated nearby device to spoof the BD_ADDR of the peer device to complete pairing without knowledge of the PIN. (CVE-2020-26555)

- A use-after-free flaw was found in vcs_read in drivers/tty/vt/vc_screen.c in vc_screen in the Linux Kernel. This issue may allow an attacker with local user access to cause a system crash or leak internal kernel information. (CVE-2023-3567)

- An issue was discovered in the USB subsystem in the Linux kernel through 6.4.2. There is an out-of-bounds and crash in read_descriptors in drivers/usb/core/sysfs.c. (CVE-2023-37453)

- In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential OOBs in smb2_parse_contexts() Validate offsets and lengths before dereferencing create contexts in smb2_parse_contexts(). This fixes following oops when accessing invalid create contexts from server: BUG:
unable to handle page fault for address: ffff8881178d8cc3 #PF: supervisor read access in kernel mode #PF:
error_code(0x0000) - not-present page PGD 4a01067 P4D 4a01067 PUD 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU:
3 PID: 1736 Comm: mount.cifs Not tainted 6.7.0-rc4 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 RIP: 0010:smb2_parse_contexts+0xa0/0x3a0 [cifs] Code: f8 10 75 13 48 b8 93 ad 25 50 9c b4 11 e7 49 39 06 0f 84 d2 00 00 00 8b 45 00 85 c0 74 61 41 29 c5 48 01 c5 41 83 fd 0f 76 55 <0f> b7 7d 04 0f b7 45 06 4c 8d 74 3d 00 66 83 f8 04 75 bc ba 04 00 RSP:
0018:ffffc900007939e0 EFLAGS: 00010216 RAX: ffffc90000793c78 RBX: ffff8880180cc000 RCX: ffffc90000793c90 RDX: ffffc90000793cc0 RSI: ffff8880178d8cc0 RDI: ffff8880180cc000 RBP: ffff8881178d8cbf R08:
ffffc90000793c22 R09: 0000000000000000 R10: ffff8880180cc000 R11: 0000000000000024 R12: 0000000000000000 R13: 0000000000000020 R14: 0000000000000000 R15: ffffc90000793c22 FS: 00007f873753cbc0(0000) GS:ffff88806bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2:
ffff8881178d8cc3 CR3: 00000000181ca000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ?
__die+0x23/0x70 ? page_fault_oops+0x181/0x480 ? search_module_extables+0x19/0x60 ? srso_alias_return_thunk+0x5/0xfbef5 ? exc_page_fault+0x1b6/0x1c0 ? asm_exc_page_fault+0x26/0x30 ? smb2_parse_contexts+0xa0/0x3a0 [cifs] SMB2_open+0x38d/0x5f0 [cifs] ? smb2_is_path_accessible+0x138/0x260 [cifs] smb2_is_path_accessible+0x138/0x260 [cifs] cifs_is_path_remote+0x8d/0x230 [cifs] cifs_mount+0x7e/0x350 [cifs] cifs_smb3_do_mount+0x128/0x780 [cifs] smb3_get_tree+0xd9/0x290 [cifs] vfs_get_tree+0x2c/0x100 ? capable+0x37/0x70 path_mount+0x2d7/0xb80 ? srso_alias_return_thunk+0x5/0xfbef5 ?
_raw_spin_unlock_irqrestore+0x44/0x60 __x64_sys_mount+0x11a/0x150 do_syscall_64+0x47/0xf0 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f8737657b1e (CVE-2023-52434)

- In the Linux kernel, the following vulnerability has been resolved: net/core: Fix ETH_P_1588 flow dissector When a PTP ethernet raw frame with a size of more than 256 bytes followed by a 0xff pattern is sent to __skb_flow_dissect, nhoff value calculation is wrong. For example: hdr->message_length takes the wrong value (0xffff) and it does not replicate real header length. In this case, 'nhoff' value was overridden and the PTP header was badly dissected. This leads to a kernel crash. net/core: flow_dissector net/core flow dissector nhoff = 0x0000000e net/core flow dissector hdr->message_length = 0x0000ffff net/core flow dissector nhoff = 0x0001000d (u16 overflow) ... skb linear: 00000000: 00 a0 c9 00 00 00 00 a0 c9 00 00 00 88 skb frag: 00000000: f7 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff Using the size of the ptp_header struct will allow the corrected calculation of the nhoff value. net/core flow dissector nhoff = 0x0000000e net/core flow dissector nhoff = 0x00000030 (sizeof ptp_header) ... skb linear:
00000000: 00 a0 c9 00 00 00 00 a0 c9 00 00 00 88 f7 ff ff skb linear: 00000010: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff skb linear: 00000020: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff skb frag:
00000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff Kernel trace: [ 74.984279] ------------[ cut here ]------------ [ 74.989471] kernel BUG at include/linux/skbuff.h:2440! [ 74.995237] invalid opcode:
0000 [#1] PREEMPT SMP NOPTI [ 75.001098] CPU: 4 PID: 0 Comm: swapper/4 Tainted: G U 5.15.85-intel-ese- standard-lts #1 [ 75.011629] Hardware name: Intel Corporation A-Island (CPU:AlderLake)/A-Island (ID:06), BIOS SB_ADLP.01.01.00.01.03.008.D-6A9D9E73-dirty Mar 30 2023 [ 75.026507] RIP:
0010:eth_type_trans+0xd0/0x130 [ 75.031594] Code: 03 88 47 78 eb c7 8b 47 68 2b 47 6c 48 8b 97 c0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb ab <0f> 0b b8 00 01 00 00 eb a2 48 85 ff 74 eb 48 8d 54 24 06 31 f6 b9 [ 75.052612] RSP: 0018:ffff9948c0228de0 EFLAGS: 00010297 [ 75.058473] RAX:
00000000000003f2 RBX: ffff8e47047dc300 RCX: 0000000000001003 [ 75.066462] RDX: ffff8e4e8c9ea040 RSI:
ffff8e4704e0a000 RDI: ffff8e47047dc300 [ 75.074458] RBP: ffff8e4704e2acc0 R08: 00000000000003f3 R09:
0000000000000800 [ 75.082466] R10: 000000000000000d R11: ffff9948c0228dec R12: ffff8e4715e4e010 [ 75.090461] R13: ffff9948c0545018 R14: 0000000000000001 R15: 0000000000000800 [ 75.098464] FS:
0000000000000000(0000) GS:ffff8e4e8fb00000(0000) knlGS:0000000000000000 [ 75.107530] CS: 0010 DS: 0000 ES:
0000 CR0: 0000000080050033 [ 75.113982] CR2: 00007f5eb35934a0 CR3: 0000000150e0a002 CR4: 0000000000770ee0 [ 75.121980] PKRU: 55555554 [ 75.125035] Call Trace: [ 75.127792] <IRQ> [ 75.130063] ? eth_get_headlen+0xa4/0xc0 [ 75.134472] igc_process_skb_fields+0xcd/0x150 [ 75.139461] igc_poll+0xc80/0x17b0 [ 75.143272] __napi_poll+0x27/0x170 [ 75.147192] net_rx_action+0x234/0x280 [ 75.151409] __do_softirq+0xef/0x2f4 [ 75.155424] irq_exit_rcu+0xc7/0x110 [ 75.159432] common_interrupt+0xb8/0xd0 [ 75.163748] </IRQ> [ 75.166112] <TASK> [ 75.168473] asm_common_interrupt+0x22/0x40 [ 75.173175] RIP: 0010:cpuidle_enter_state+0xe2/0x350 [ 75.178749] Code: 85 c0 0f 8f 04 02 00 00 31 ff e8 39 6c 67 ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 50 02 00 00 31 ff e8 52 b0 6d ff fb 45 85 f6 <0f> 88 b1 00 00 00 49 63 ce 4c 2b 2c 24 48 89 c8 48 6b d1 68 48 c1 [ 75.199757] RSP:
0018:ffff9948c013bea8 EFLAGS: 00000202 [ 75.205614] RAX: ffff8e4e8fb00000 RBX: ffffb948bfd23900 RCX:
000000000000001f [ 75.213619] RDX: 0000000000000004 RSI: ffffffff94206161 RDI: ffffffff94212e20 [ 75.221620] RBP: 0000000000000004 R08: 000000117568973a R09: 0000000000000001 [ 75.229622] R10:
000000000000afc8 R11: ffff8e4e8fb29ce4 R12: ffffffff945ae980 [ 75.237628] R13: 000000117568973a R14:
0000000000000004 R15: 0000000000000000 [ 75.245635] ? ---truncated--- (CVE-2023-52580)

- A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. The nft_verdict_init() function allows positive values as drop error within the hook verdict, and hence the nf_hook_slow() function can cause a double free vulnerability when NF_DROP is issued with a drop error which resembles NF_ACCEPT. We recommend upgrading past commit f342de4e2f33e0e39165d8639387aa6c19dff660. (CVE-2024-1086)

- In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: fix NEXTHDR_FRAGMENT handling in ip6_tnl_parse_tlv_enc_lim() syzbot pointed out [1] that NEXTHDR_FRAGMENT handling is broken.
Reading frag_off can only be done if we pulled enough bytes to skb->head. Currently we might access garbage. [1] BUG: KMSAN: uninit-value in ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0 ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0 ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline] ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592 neigh_output include/net/neighbour.h:542 [inline] ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137 ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243 dst_output include/net/dst.h:451 [inline] ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155 ip6_send_skb net/ipv6/ip6_output.c:1952 [inline] ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972 rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582 rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920 inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x490 net/socket.c:2674 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] __kmem_cache_alloc_node+0x5c9/0x970 mm/slub.c:3517
__do_kmalloc_node mm/slab_common.c:1006 [inline] __kmalloc_node_track_caller+0x118/0x3c0 mm/slab_common.c:1027 kmalloc_reserve+0x249/0x4a0 net/core/skbuff.c:582 pskb_expand_head+0x226/0x1a00 net/core/skbuff.c:2098 __pskb_pull_tail+0x13b/0x2310 net/core/skbuff.c:2655 pskb_may_pull_reason include/linux/skbuff.h:2673 [inline] pskb_may_pull include/linux/skbuff.h:2681 [inline] ip6_tnl_parse_tlv_enc_lim+0x901/0xbb0 net/ipv6/ip6_tunnel.c:408 ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline] ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592 neigh_output include/net/neighbour.h:542 [inline] ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137 ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243 dst_output include/net/dst.h:451 [inline] ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155 ip6_send_skb net/ipv6/ip6_output.c:1952 [inline] ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972 rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582 rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920 inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendms ---truncated--- (CVE-2024-26633)

- A null pointer dereference vulnerability was found in nft_dynset_init() in net/netfilter/nft_dynset.c in nf_tables in the Linux kernel. This issue may allow a local attacker with CAP_NET_ADMIN user privilege to trigger a denial of service. (CVE-2023-6622)

- An out-of-bounds memory read flaw was found in receive_encrypted_standard in fs/smb/client/smb2ops.c in the SMB Client sub-component in the Linux Kernel. This issue occurs due to integer underflow on the memcpy length, leading to a denial of service. (CVE-2024-0565)

- bt_sock_recvmsg in net/bluetooth/af_bluetooth.c in the Linux kernel through 6.6.8 has a use-after-free because of a bt_sock_ioctl race condition. (CVE-2023-51779)

- In the Linux kernel, the following vulnerability has been resolved: perf/x86/lbr: Filter vsyscall addresses We found that a panic can occur when a vsyscall is made while LBR sampling is active. If the vsyscall is interrupted (NMI) for perf sampling, this call sequence can occur (most recent at top):
__insn_get_emulate_prefix() insn_get_emulate_prefix() insn_get_prefixes() insn_get_opcode() decode_branch_type() get_branch_type() intel_pmu_lbr_filter() intel_pmu_handle_irq() perf_event_nmi_handler() Within __insn_get_emulate_prefix() at frame 0, a macro is called:
peek_nbyte_next(insn_byte_t, insn, i) Within this macro, this dereference occurs: (insn)->next_byte Inspecting registers at this point, the value of the next_byte field is the address of the vsyscall made, for example the location of the vsyscall version of gettimeofday() at 0xffffffffff600000. The access to an address in the vsyscall region will trigger an oops due to an unhandled page fault. To fix the bug, filtering for vsyscalls can be done when determining the branch type. This patch will return a none branch if a kernel address if found to lie in the vsyscall region. (CVE-2023-52476)

- In the Linux kernel, the following vulnerability has been resolved: team: fix null-ptr-deref when team device type is changed Get a null-ptr-deref bug as follows with reproducer [1]. BUG: kernel NULL pointer dereference, address: 0000000000000228 ... RIP: 0010:vlan_dev_hard_header+0x35/0x140 [8021q] ... Call Trace: <TASK> ? __die+0x24/0x70 ? page_fault_oops+0x82/0x150 ? exc_page_fault+0x69/0x150 ? asm_exc_page_fault+0x26/0x30 ? vlan_dev_hard_header+0x35/0x140 [8021q] ? vlan_dev_hard_header+0x8e/0x140 [8021q] neigh_connected_output+0xb2/0x100 ip6_finish_output2+0x1cb/0x520 ? nf_hook_slow+0x43/0xc0 ? ip6_mtu+0x46/0x80 ip6_finish_output+0x2a/0xb0 mld_sendpack+0x18f/0x250 mld_ifc_work+0x39/0x160 process_one_work+0x1e6/0x3f0 worker_thread+0x4d/0x2f0 ? __pfx_worker_thread+0x10/0x10 kthread+0xe5/0x120 ?
__pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 [1] $ teamd -t team0 -d -c '{runner: {name: loadbalance}}' $ ip link add name t-dummy type dummy $ ip link add link t-dummy name t-dummy.100 type vlan id 100 $ ip link add name t-nlmon type nlmon $ ip link set t-nlmon master team0 $ ip link set t-nlmon nomaster $ ip link set t-dummy up $ ip link set team0 up $ ip link set t-dummy.100 down $ ip link set t-dummy.100 master team0 When enslave a vlan device to team device and team device type is changed from non-ether to ether, header_ops of team device is changed to vlan_header_ops. That is incorrect and will trigger null-ptr-deref for vlan->real_dev in vlan_dev_hard_header() because team device is not a vlan device. Cache eth_header_ops in team_setup(), then assign cached header_ops to header_ops of team net device when its type is changed from non-ether to ether to fix the bug. (CVE-2023-52574)

- In the Linux kernel, the following vulnerability has been resolved: net: tls: fix use-after-free with partial reads and async decrypt tls_decrypt_sg doesn't take a reference on the pages from clear_skb, so the put_page() in tls_decrypt_done releases them, and we trigger a use-after-free in process_rx_list when we try to read from the partially-read skb. (CVE-2024-26582)

- In the Linux kernel, the following vulnerability has been resolved: sched/membarrier: reduce the ability to hammer on sys_membarrier On some systems, sys_membarrier can be very expensive, causing overall slowdowns for everything. So put a lock on the path in order to serialize the accesses to prevent the ability for this to be called at too high of a frequency and saturate the machine. (CVE-2024-26602)

- In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix kernel NULL pointer dereference in gfs2_rgrp_dump Syzkaller has reported a NULL pointer dereference when accessing rgd->rd_rgl in gfs2_rgrp_dump(). This can happen when creating rgd->rd_gl fails in read_rindex_entry(). Add a NULL pointer check in gfs2_rgrp_dump() to prevent that. (CVE-2023-52448)

- In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: disallow timeout for anonymous sets Never used from userspace, disallow these parameters. (CVE-2023-52620)

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.

Solution

Update the affected packages.

See Also

https://linux.oracle.com/errata/ELSA-2024-2394.html

Plugin Details

Severity: Critical

ID: 195036

File Name: oraclelinux_ELSA-2024-2394.nasl

Version: 1.1

Type: local

Agent: unix

Published: 5/6/2024

Updated: 5/7/2024

Supported Sensors: Frictionless Assessment Agent, Nessus Agent, Nessus

Risk Information

VPR

Risk Factor: Critical

Score: 9.6

CVSS v2

Risk Factor: Medium

Base Score: 4.8

Temporal Score: 4.2

Vector: CVSS2#AV:A/AC:L/Au:N/C:P/I:P/A:N

CVSS Score Source: CVE-2020-26555

CVSS v3

Risk Factor: Critical

Base Score: 9.8

Temporal Score: 9.4

Vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Temporal Vector: CVSS:3.0/E:H/RL:O/RC:C

CVSS Score Source: CVE-2023-25775

Vulnerability Information

CPE: cpe:/a:oracle:linux:9:4:appstream_base, cpe:/a:oracle:linux:9::appstream, cpe:/a:oracle:linux:9::codeready_builder, cpe:/o:oracle:linux:9, cpe:/o:oracle:linux:9:4:baseos_base, cpe:/o:oracle:linux:9::baseos_latest, p-cpe:/a:oracle:linux:bpftool, p-cpe:/a:oracle:linux:kernel, p-cpe:/a:oracle:linux:kernel-abi-stablelists, p-cpe:/a:oracle:linux:kernel-core, p-cpe:/a:oracle:linux:kernel-cross-headers, p-cpe:/a:oracle:linux:kernel-debug, p-cpe:/a:oracle:linux:kernel-debug-core, p-cpe:/a:oracle:linux:kernel-debug-devel, p-cpe:/a:oracle:linux:kernel-debug-devel-matched, p-cpe:/a:oracle:linux:kernel-debug-modules, p-cpe:/a:oracle:linux:kernel-debug-modules-core, p-cpe:/a:oracle:linux:kernel-debug-modules-extra, p-cpe:/a:oracle:linux:kernel-debug-uki-virt, p-cpe:/a:oracle:linux:kernel-devel, p-cpe:/a:oracle:linux:kernel-devel-matched, p-cpe:/a:oracle:linux:kernel-headers, p-cpe:/a:oracle:linux:kernel-modules, p-cpe:/a:oracle:linux:kernel-modules-core, p-cpe:/a:oracle:linux:kernel-modules-extra, p-cpe:/a:oracle:linux:kernel-tools, p-cpe:/a:oracle:linux:kernel-tools-libs, p-cpe:/a:oracle:linux:kernel-tools-libs-devel, p-cpe:/a:oracle:linux:kernel-uki-virt, p-cpe:/a:oracle:linux:libperf, p-cpe:/a:oracle:linux:perf, p-cpe:/a:oracle:linux:python3-perf, p-cpe:/a:oracle:linux:rtla, p-cpe:/a:oracle:linux:rv

Required KB Items: Host/OracleLinux, Host/RedHat/release, Host/RedHat/rpm-list, Host/local_checks_enabled

Exploit Available: true

Exploit Ease: Exploits are available

Patch Publication Date: 5/2/2024

Vulnerability Publication Date: 5/24/2021

Exploitable With

Core Impact

Reference Information

CVE: CVE-2020-26555, CVE-2022-0480, CVE-2022-38096, CVE-2022-45934, CVE-2023-24023, CVE-2023-25775, CVE-2023-28464, CVE-2023-28866, CVE-2023-31083, CVE-2023-3567, CVE-2023-37453, CVE-2023-39189, CVE-2023-39193, CVE-2023-39194, CVE-2023-39198, CVE-2023-4133, CVE-2023-42754, CVE-2023-42756, CVE-2023-45863, CVE-2023-46862, CVE-2023-51043, CVE-2023-51779, CVE-2023-51780, CVE-2023-52434, CVE-2023-52448, CVE-2023-52476, CVE-2023-52489, CVE-2023-52522, CVE-2023-52529, CVE-2023-52574, CVE-2023-52578, CVE-2023-52580, CVE-2023-52581, CVE-2023-52610, CVE-2023-52620, CVE-2023-6040, CVE-2023-6121, CVE-2023-6176, CVE-2023-6531, CVE-2023-6546, CVE-2023-6622, CVE-2023-6915, CVE-2023-6931, CVE-2023-6932, CVE-2024-0565, CVE-2024-0841, CVE-2024-1085, CVE-2024-1086, CVE-2024-26582, CVE-2024-26583, CVE-2024-26584, CVE-2024-26585, CVE-2024-26586, CVE-2024-26593, CVE-2024-26602, CVE-2024-26609, CVE-2024-26633

IAVA: 2023-A-0638-S