EulerOS 2.0 SP9 : dnsmasq (EulerOS-SA-2021-1244)

high Nessus Plugin ID 146218
New! Plugin Severity Now Using CVSS v3

The calculated severity for Plugins has been updated to use CVSS v3 by default. Plugins that do not have a CVSS v3 score will fall back to CVSS v2 for calculating severity. Severity display preferences can be toggled in the settings dropdown.

Synopsis

The remote EulerOS host is missing multiple security updates.

Description

According to the versions of the dnsmasq package installed, the EulerOS installation on the remote host is affected by the following vulnerabilities :

- A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in the way RRSets are sorted before validating with DNSSEC data.
An attacker on the network, who can forge DNS replies such as that they are accepted as valid, could use this flaw to cause a buffer overflow with arbitrary data in a heap memory segment, possibly executing code on the machine. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.(CVE-2020-25681)

- A flaw was found in dnsmasq before 2.83. A buffer overflow vulnerability was discovered in the way dnsmasq extract names from DNS packets before validating them with DNSSEC data. An attacker on the network, who can create valid DNS replies, could use this flaw to cause an overflow with arbitrary data in a heap-allocated memory, possibly executing code on the machine. The flaw is in the rfc1035.c:extract_name() function, which writes data to the memory pointed by name assuming MAXDNAME*2 bytes are available in the buffer. However, in some code execution paths, it is possible extract_name() gets passed an offset from the base buffer, thus reducing, in practice, the number of available bytes that can be written in the buffer. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.(CVE-2020-25682)

- A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in get_rdata() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability.(CVE-2020-25683)

- A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in the forward.c:reply_query() if the reply destination address/port is used by the pending forwarded queries.
However, it does not use the address/port to retrieve the exact forwarded query, substantially reducing the number of attempts an attacker on the network would have to perform to forge a reply and get it accepted by dnsmasq. This issue contrasts with RFC5452, which specifies a query's attributes that all must be used to match a reply. This flaw allows an attacker to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25685 or CVE-2020-25686, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity.(CVE-2020-25684)

- A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in forward.c:reply_query(), which is the forwarded query that matches the reply, by only using a weak hash of the query name. Due to the weak hash (CRC32 when dnsmasq is compiled without DNSSEC, SHA-1 when it is) this flaw allows an off-path attacker to find several different domains all having the same hash, substantially reducing the number of attempts they would have to perform to forge a reply and get it accepted by dnsmasq. This is in contrast with RFC5452, which specifies that the query name is one of the attributes of a query that must be used to match a reply. This flaw could be abused to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25684 the attack complexity of a successful attack is reduced.
The highest threat from this vulnerability is to data integrity.(CVE-2020-25685)

- A flaw was found in dnsmasq before version 2.83. When receiving a query, dnsmasq does not check for an existing pending request for the same name and forwards a new request. By default, a maximum of 150 pending queries can be sent to upstream servers, so there can be at most 150 queries for the same name. This flaw allows an off-path attacker on the network to substantially reduce the number of attempts that it would have to perform to forge a reply and have it accepted by dnsmasq. This issue is mentioned in the 'Birthday Attacks' section of RFC5452. If chained with CVE-2020-25684, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity.(CVE-2020-25686)

- A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. This flaw allows a remote attacker, who can create valid DNS replies, to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in sort_rrset() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability.(CVE-2020-25687)

Note that Tenable Network Security has extracted the preceding description block directly from the EulerOS security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.

Solution

Update the affected dnsmasq packages.

See Also

http://www.nessus.org/u?1cc63d9c

Plugin Details

Severity: High

ID: 146218

File Name: EulerOS_SA-2021-1244.nasl

Version: 1.2

Type: local

Published: 2/5/2021

Updated: 2/9/2021

Dependencies: ssh_get_info.nasl

Risk Information

VPR

Risk Factor: Medium

Score: 6.7

CVSS v2

Risk Factor: High

Base Score: 8.3

Temporal Score: 6.1

Vector: AV:N/AC:M/Au:N/C:P/I:P/A:C

Temporal Vector: E:U/RL:OF/RC:C

CVSS v3

Risk Factor: High

Base Score: 8.1

Temporal Score: 7.1

Vector: CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

Temporal Vector: E:U/RL:O/RC:C

Vulnerability Information

CPE: p-cpe:/a:huawei:euleros:dnsmasq, cpe:/o:huawei:euleros:2.0

Required KB Items: Host/local_checks_enabled, Host/EulerOS/release, Host/EulerOS/rpm-list, Host/EulerOS/sp

Excluded KB Items: Host/EulerOS/uvp_version

Exploit Ease: No known exploits are available

Patch Publication Date: 2/5/2021

Reference Information

CVE: CVE-2020-25681, CVE-2020-25682, CVE-2020-25683, CVE-2020-25684, CVE-2020-25685, CVE-2020-25686, CVE-2020-25687