TencentOS Server 4: kernel (TSSA-2025:0429)

high Nessus Plugin ID 276429

Synopsis

The remote TencentOS Server 4 host is missing one or more security updates.

Description

The version of Tencent Linux installed on the remote TencentOS Server 4 host is prior to tested version. It is, therefore, affected by multiple vulnerabilities as referenced in the TSSA-2025:0429 advisory.

Package updates are available for TencentOS Server 4 that fix the following vulnerabilities:

CVE-2024-50017:
In the Linux kernel, the following vulnerability has been resolved:

scsi: libfc: Fix potential NULL pointer dereference in fc_lport_ptp_setup()

fc_lport_ptp_setup() did not check the return value of fc_rport_create() which can return NULL and would cause a NULL pointer dereference. Address this issue by checking return value of fc_rport_create() and log error message on fc_rport_create() failed.

CVE-2023-52817:
In the Linux kernel, the following vulnerability has been resolved:

drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULL

In certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log:

1. Navigate to the directory: /sys/kernel/debug/dri/0 2. Execute command: cat amdgpu_regs_smc 3. Exception Log::
[4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000 [4005007.702562] #PF: supervisor instruction fetch in kernel mode [4005007.702567] #PF: error_code(0x0010) - not-present page [4005007.702570] PGD 0 P4D 0 [4005007.702576] Oops: 0010 [#1] SMP NOPTI [4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u [4005007.702590] RIP: 0010:0x0 [4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6.
[4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206 [4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68 [4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000 [4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980 [4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000 [4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000 [4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000 [4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0 [4005007.702633] Call Trace:
[4005007.702636] <TASK> [4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu] [4005007.703002] full_proxy_read+0x5c/0x80 [4005007.703011] vfs_read+0x9f/0x1a0 [4005007.703019] ksys_read+0x67/0xe0 [4005007.703023] __x64_sys_read+0x19/0x20 [4005007.703028] do_syscall_64+0x5c/0xc0 [4005007.703034] ? do_user_addr_fault+0x1e3/0x670 [4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0 [4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20 [4005007.703052] ? irqentry_exit+0x19/0x30 [4005007.703057] ? exc_page_fault+0x89/0x160 [4005007.703062] ? asm_exc_page_fault+0x8/0x30 [4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae [4005007.703075] RIP: 0033:0x7f5e07672992 [4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24 [4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 [4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992 [4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003 [4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010 [4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000 [4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000 [4005007.703105] </TASK> [4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca [4005007.703184] CR2: 0000000000000000 [4005007.703188] ---[ en
---truncated---

CVE-2024-53060:
In the Linux kernel, the following vulnerability has been resolved:

smack: tcp: ipv4, fix incorrect labeling

Currently, Smack mirrors the label of incoming tcp/ipv4 connections:
when a label 'foo' connects to a label 'bar' with tcp/ipv4, 'foo' always gets 'foo' in returned ipv4 packets. So, 1) returned packets are incorrectly labeled ('foo' instead of 'bar') 2) 'bar' can write to 'foo' without being authorized to write.

Here is a scenario how to see this:

* Take two machines, let's call them C and S, with active Smack in the default state (no settings, no rules, no labeled hosts, only builtin labels)

* At S, add Smack rule 'foo bar w' (labels 'foo' and 'bar' are instantiated at S at this moment)

* At S, at label 'bar', launch a program that listens for incoming tcp/ipv4 connections

* From C, at label 'foo', connect to the listener at S.
(label 'foo' is instantiated at C at this moment) Connection succeedes and works.

* Send some data in both directions.
* Collect network traffic of this connection.

All packets in both directions are labeled with the CIPSO of the label 'foo'. Hence, label 'bar' writes to 'foo' without being authorized, and even without ever being known at C.

If anybody cares: exactly the same happens with DCCP.

This behavior 1st manifested in release 2.6.29.4 (see Fixes below) and it looks unintentional. At least, no explanation was provided.

I changed returned packes label into the 'bar', to bring it into line with the Smack documentation claims.

CVE-2024-56548:
In the Linux kernel, the following vulnerability has been resolved:

selinux,smack: don't bypass permissions check in inode_setsecctx hook

Marek Gresko reports that the root user on an NFS client is able to change the security labels on files on an NFS filesystem that is exported with root squashing enabled.

The end of the kerneldoc comment for __vfs_setxattr_noperm() states:

* This function requires the caller to lock the inode's i_mutex before it
* is executed. It also assumes that the caller will make the appropriate
* permission checks.

nfsd_setattr() does do permissions checking via fh_verify() and nfsd_permission(), but those don't do all the same permissions checks that are done by security_inode_setxattr() and its related LSM hooks do.

Since nfsd_setattr() is the only consumer of security_inode_setsecctx(), simplest solution appears to be to replace the call to
__vfs_setxattr_noperm() with a call to __vfs_setxattr_locked(). This fixes the above issue and has the added benefit of causing nfsd to recall conflicting delegations on a file when a client tries to change its security label.

CVE-2024-57892:
In the Linux kernel, the following vulnerability has been resolved:

ACPI: sysfs: validate return type of _STR method

Only buffer objects are valid return values of _STR.

If something else is returned description_show() will access invalid memory.

CVE-2024-56630:
In the Linux kernel, the following vulnerability has been resolved:

IB/core: Fix ib_cache_setup_one error flow cleanup

When ib_cache_update return an error, we exit ib_cache_setup_one instantly with no proper cleanup, even though before this we had already successfully done gid_table_setup_one, that results in the kernel WARN below.

Do proper cleanup using gid_table_cleanup_one before returning the err in order to fix the issue.

WARNING: CPU: 4 PID: 922 at drivers/infiniband/core/cache.c:806 gid_table_release_one+0x181/0x1a0 Modules linked in:
CPU: 4 UID: 0 PID: 922 Comm: c_repro Not tainted 6.11.0-rc1+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:gid_table_release_one+0x181/0x1a0 Code: 44 8b 38 75 0c e8 2f cb 34 ff 4d 8b b5 28 05 00 00 e8 23 cb 34 ff 44 89 f9 89 da 4c 89 f6 48 c7 c7 d0 58 14 83 e8 4f de 21 ff <0f> 0b 4c 8b 75 30 e9 54 ff ff ff 48 8 3 c4 10 5b 5d 41 5c 41 5d 41 RSP: 0018:ffffc90002b835b0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff811c8527 RDX: 0000000000000000 RSI: ffffffff811c8534 RDI: 0000000000000001 RBP: ffff8881011b3d00 R08: ffff88810b3abe00 R09: 205d303839303631 R10: 666572207972746e R11: 72746e6520444947 R12: 0000000000000001 R13: ffff888106390000 R14: ffff8881011f2110 R15: 0000000000000001 FS: 00007fecc3b70800(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000340 CR3: 000000010435a001 CR4: 00000000003706b0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace:
<TASK> ? show_regs+0x94/0xa0 ? __warn+0x9e/0x1c0 ? gid_table_release_one+0x181/0x1a0 ? report_bug+0x1f9/0x340 ? gid_table_release_one+0x181/0x1a0 ? handle_bug+0xa2/0x110 ? exc_invalid_op+0x31/0xa0 ? asm_exc_invalid_op+0x16/0x20 ? __warn_printk+0xc7/0x180 ? __warn_printk+0xd4/0x180 ? gid_table_release_one+0x181/0x1a0 ib_device_release+0x71/0xe0 ? __pfx_ib_device_release+0x10/0x10 device_release+0x44/0xd0 kobject_put+0x135/0x3d0 put_device+0x20/0x30 rxe_net_add+0x7d/0xa0 rxe_newlink+0xd7/0x190 nldev_newlink+0x1b0/0x2a0 ? __pfx_nldev_newlink+0x10/0x10 rdma_nl_rcv_msg+0x1ad/0x2e0 rdma_nl_rcv_skb.constprop.0+0x176/0x210 netlink_unicast+0x2de/0x400 netlink_sendmsg+0x306/0x660
__sock_sendmsg+0x110/0x120
____sys_sendmsg+0x30e/0x390
___sys_sendmsg+0x9b/0xf0 ? kstrtouint+0x6e/0xa0 ? kstrtouint_from_user+0x7c/0xb0 ? get_pid_task+0xb0/0xd0 ? proc_fail_nth_write+0x5b/0x140 ? __fget_light+0x9a/0x200 ? preempt_count_add+0x47/0xa0
__sys_sendmsg+0x61/0xd0 do_syscall_64+0x50/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e

CVE-2024-43894:
In the Linux kernel, the following vulnerability has been resolved:

md/raid5: fix deadlock that raid5d() wait for itself to clear MD_SB_CHANGE_PENDING

Xiao reported that lvm2 test lvconvert-raid-takeover.sh can hang with small possibility, the root cause is exactly the same as commit bed9e27baf52 (Revert md/raid5: Wait for MD_SB_CHANGE_PENDING in raid5d)

However, Dan reported another hang after that, and junxiao investigated the problem and found out that this is caused by plugged bio can't issue from raid5d().

Current implementation in raid5d() has a weird dependence:

1) md_check_recovery() from raid5d() must hold 'reconfig_mutex' to clear MD_SB_CHANGE_PENDING;
2) raid5d() handles IO in a deadloop, until all IO are issued;
3) IO from raid5d() must wait for MD_SB_CHANGE_PENDING to be cleared;

This behaviour is introduce before v2.6, and for consequence, if other context hold 'reconfig_mutex', and md_check_recovery() can't update super_block, then raid5d() will waste one cpu 100% by the deadloop, until 'reconfig_mutex' is released.

Refer to the implementation from raid1 and raid10, fix this problem by skipping issue IO if MD_SB_CHANGE_PENDING is still set after md_check_recovery(), daemon thread will be woken up when 'reconfig_mutex' is released. Meanwhile, the hang problem will be fixed as well.

CVE-2024-47659:
In the Linux kernel, the following vulnerability has been resolved:

x86/mm/ident_map: Use gbpages only where full GB page should be mapped.

When ident_pud_init() uses only GB pages to create identity maps, large ranges of addresses not actually requested can be included in the resulting table; a 4K request will map a full GB. This can include a lot of extra address space past that requested, including areas marked reserved by the BIOS. That allows processor speculation into reserved regions, that on UV systems can cause system halts.

Only use GB pages when map creation requests include the full GB page of space. Fall back to using smaller 2M pages when only portions of a GB page are included in the request.

No attempt is made to coalesce mapping requests. If a request requires a map entry at the 2M (pmd) level, subsequent mapping requests within the same 1G region will also be at the pmd level, even if adjacent or overlapping such requests could have been combined to map a full GB page.
Existing usage starts with larger regions and then adds smaller regions, so this should not have any great consequence.

CVE-2024-50273:
In the Linux kernel, the following vulnerability has been resolved:

zram: fix NULL pointer in comp_algorithm_show()

LTP reported a NULL pointer dereference as followed:

CPU: 7 UID: 0 PID: 5995 Comm: cat Kdump: loaded Not tainted 6.12.0-rc6+ #3 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __pi_strcmp+0x24/0x140 lr : zcomp_available_show+0x60/0x100 [zram] sp : ffff800088b93b90 x29: ffff800088b93b90 x28: 0000000000000001 x27: 0000000000400cc0 x26: 0000000000000ffe x25: ffff80007b3e2388 x24: 0000000000000000 x23: ffff80007b3e2390 x22: ffff0004041a9000 x21: ffff80007b3e2900 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: ffff80007b3e2900 x9 : ffff80007b3cb280 x8 : 0101010101010101 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000040 x4 : 0000000000000000 x3 : 00656c722d6f7a6c x2 : 0000000000000000 x1 : ffff80007b3e2900 x0 : 0000000000000000 Call trace:
__pi_strcmp+0x24/0x140 comp_algorithm_show+0x40/0x70 [zram] dev_attr_show+0x28/0x80 sysfs_kf_seq_show+0x90/0x140 kernfs_seq_show+0x34/0x48 seq_read_iter+0x1d4/0x4e8 kernfs_fop_read_iter+0x40/0x58 new_sync_read+0x9c/0x168 vfs_read+0x1a8/0x1f8 ksys_read+0x74/0x108
__arm64_sys_read+0x24/0x38 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x38/0x138 el0t_64_sync_handler+0xc0/0xc8 el0t_64_sync+0x188/0x190

The zram->comp_algs[ZRAM_PRIMARY_COMP] can be NULL in zram_add() if comp_algorithm_set() has not been called. User can access the zram device by sysfs after device_add_disk(), so there is a time window to trigger the NULL pointer dereference. Move it ahead device_add_disk() to make sure when user can access the zram device, it is ready. comp_algorithm_set() is protected by zram->init_lock in other places and no such problem.

CVE-2024-53222:
In the Linux kernel, the following vulnerability has been resolved:

ocfs2: fix slab-use-after-free due to dangling pointer dqi_priv

When mounting ocfs2 and then remounting it as read-only, a slab-use-after-free occurs after the user uses a syscall to quota_getnextquota. Specifically, sb_dqinfo(sb, type)->dqi_priv is the dangling pointer.

During the remounting process, the pointer dqi_priv is freed but is never set as null leaving it to be accessed. Additionally, the read-only option for remounting sets the DQUOT_SUSPENDED flag instead of setting the DQUOT_USAGE_ENABLED flags. Moreover, later in the process of getting the next quota, the function ocfs2_get_next_id is called and only checks the quota usage flags and not the quota suspended flags.

To fix this, I set dqi_priv to null when it is freed after remounting with read-only and put a check for DQUOT_SUSPENDED in ocfs2_get_next_id.

[[email protected]: coding-style cleanups]

CVE-2024-56586:
In the Linux kernel, the following vulnerability has been resolved:

nfsd: fix nfs4_openowner leak when concurrent nfsd4_open occur

The action force umount(umount -f) will attempt to kill all rpc_task even umount operation may ultimately fail if some files remain open.
Consequently, if an action attempts to open a file, it can potentially send two rpc_task to nfs server.

NFS CLIENT thread1 thread2 open(file) ...
nfs4_do_open
_nfs4_do_open
_nfs4_open_and_get_state
_nfs4_proc_open nfs4_run_open_task /* rpc_task1 */ rpc_run_task rpc_wait_for_completion_task

umount -f nfs_umount_begin rpc_killall_tasks rpc_signal_task rpc_task1 been wakeup and return -512
_nfs4_do_open // while loop ...
nfs4_run_open_task /* rpc_task2 */ rpc_run_task rpc_wait_for_completion_task

While processing an open request, nfsd will first attempt to find or allocate an nfs4_openowner. If it finds an nfs4_openowner that is not marked as NFS4_OO_CONFIRMED, this nfs4_openowner will released. Since two rpc_task can attempt to open the same file simultaneously from the client to server, and because two instances of nfsd can run concurrently, this situation can lead to lots of memory leak.
Additionally, when we echo 0 to /proc/fs/nfsd/threads, warning will be triggered.

NFS SERVER nfsd1 nfsd2 echo 0 > /proc/fs/nfsd/threads

nfsd4_open nfsd4_process_open1 find_or_alloc_open_stateowner // alloc oo1, stateid1 nfsd4_open nfsd4_process_open1 find_or_alloc_open_stateowner // find oo1, without NFS4_OO_CONFIRMED release_openowner unhash_openowner_locked list_del_init(&oo->oo_perclient) // cannot find this oo // from client, LEAK!!! alloc_stateowner // alloc oo2

nfsd4_process_open2 init_open_stateid // associate oo1 // with stateid1, stateid1 LEAK!!! nfs4_get_vfs_file // alloc nfsd_file1 and nfsd_file_mark1 // all LEAK!!!

nfsd4_process_open2 ...

write_threads ...
nfsd_destroy_serv nfsd_shutdown_net nfs4_state_shutdown_net nfs4_state_destroy_net destroy_client
__destroy_client // won't find oo1!!! nfsd_shutdown_generic nfsd_file_cache_shutdown kmem_cache_destroy for nfsd_file_slab and nfsd_file_mark_slab // bark since nfsd_file1 // and nfsd_file_mark1 // still alive

======================================================================= BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on
__kmem_cache_shutdown()
-----------------------------------------------------------------------

Slab 0xffd4000004438a80 objects=34 used=1 fp=0xff11000110e2ad28 flags=0x17ffffc0000240(workingset|head|node=0|zone=2|lastcpupid=0x1fffff) CPU: 4 UID: 0 PID: 757 Comm: sh Not tainted 6.12.0-rc6+ #19 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace:
<TASK> dum
---truncated---

CVE-2024-50151:
In the Linux kernel, the following vulnerability has been resolved:

btrfs: fix use-after-free when COWing tree bock and tracing is enabled

When a COWing a tree block, at btrfs_cow_block(), and we have the tracepoint trace_btrfs_cow_block() enabled and preemption is also enabled (CONFIG_PREEMPT=y), we can trigger a use-after-free in the COWed extent buffer while inside the tracepoint code. This is because in some paths that call btrfs_cow_block(), such as btrfs_search_slot(), we are holding the last reference on the extent buffer @buf so btrfs_force_cow_block() drops the last reference on the @buf extent buffer when it calls free_extent_buffer_stale(buf), which schedules the release of the extent buffer with RCU. This means that if we are on a kernel with preemption, the current task may be preempted before calling trace_btrfs_cow_block() and the extent buffer already released by the time trace_btrfs_cow_block() is called, resulting in a use-after-free.

Fix this by moving the trace_btrfs_cow_block() from btrfs_cow_block() to btrfs_force_cow_block() before the COWed extent buffer is freed.
This also has a side effect of invoking the tracepoint in the tree defrag code, at defrag.c:btrfs_realloc_node(), since btrfs_force_cow_block() is called there, but this is fine and it was actually missing there.

CVE-2024-46753:
In the Linux kernel, the following vulnerability has been resolved:

ocfs2: free inode when ocfs2_get_init_inode() fails

syzbot is reporting busy inodes after unmount, for commit 9c89fe0af826 (ocfs2: Handle error from dquot_initialize()) forgot to call iput() when new_inode() succeeded and dquot_initialize() failed.

CVE-2024-50116:
In the Linux kernel, the following vulnerability has been resolved:

jfs: fix shift-out-of-bounds in dbSplit

When dmt_budmin is less than zero, it causes errors in the later stages. Added a check to return an error beforehand in dbAllocCtl itself.

CVE-2024-50218:
In the Linux kernel, the following vulnerability has been resolved:

f2fs: fix f2fs_bug_on when uninstalling filesystem call f2fs_evict_inode.

creating a large files during checkpoint disable until it runs out of space and then delete it, then remount to enable checkpoint again, and then unmount the filesystem triggers the f2fs_bug_on as below:

------------[ cut here ]------------ kernel BUG at fs/f2fs/inode.c:896! CPU: 2 UID: 0 PID: 1286 Comm: umount Not tainted 6.11.0-rc7-dirty #360 Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:f2fs_evict_inode+0x58c/0x610 Call Trace:
__die_body+0x15/0x60 die+0x33/0x50 do_trap+0x10a/0x120 f2fs_evict_inode+0x58c/0x610 do_error_trap+0x60/0x80 f2fs_evict_inode+0x58c/0x610 exc_invalid_op+0x53/0x60 f2fs_evict_inode+0x58c/0x610 asm_exc_invalid_op+0x16/0x20 f2fs_evict_inode+0x58c/0x610 evict+0x101/0x260 dispose_list+0x30/0x50 evict_inodes+0x140/0x190 generic_shutdown_super+0x2f/0x150 kill_block_super+0x11/0x40 kill_f2fs_super+0x7d/0x140 deactivate_locked_super+0x2a/0x70 cleanup_mnt+0xb3/0x140 task_work_run+0x61/0x90

The root cause is: creating large files during disable checkpoint period results in not enough free segments, so when writing back root inode will failed in f2fs_enable_checkpoint. When umount the file system after enabling checkpoint, the root inode is dirty in f2fs_evict_inode function, which triggers BUG_ON. The steps to reproduce are as follows:

dd if=/dev/zero of=f2fs.img bs=1M count=55 mount f2fs.img f2fs_dir -o checkpoint=disable:10% dd if=/dev/zero of=big bs=1M count=50 sync rm big mount -o remount,checkpoint=enable f2fs_dir umount f2fs_dir

Let's redirty inode when there is not free segments during checkpoint is disable.

CVE-2024-39476:
In the Linux kernel, the following vulnerability has been resolved:

nfsd: make sure exp active before svc_export_show

The function `e_show` was called with protection from RCU. This only ensures that `exp` will not be freed. Therefore, the reference count for `exp` can drop to zero, which will trigger a refcount use-after-free warning when `exp_get` is called. To resolve this issue, use `cache_get_rcu` to ensure that `exp` remains active.

------------[ cut here ]------------ refcount_t: addition on 0; use-after-free.
WARNING: CPU: 3 PID: 819 at lib/refcount.c:25 refcount_warn_saturate+0xb1/0x120 CPU: 3 UID: 0 PID: 819 Comm: cat Not tainted 6.12.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 RIP: 0010:refcount_warn_saturate+0xb1/0x120 ...
Call Trace:
<TASK> e_show+0x20b/0x230 [nfsd] seq_read_iter+0x589/0x770 seq_read+0x1e5/0x270 vfs_read+0x125/0x530 ksys_read+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e

CVE-2024-56759:
In the Linux kernel, the following vulnerability has been resolved:

hfsplus: don't query the device logical block size multiple times

Devices block sizes may change. One of these cases is a loop device by using ioctl LOOP_SET_BLOCK_SIZE.

While this may cause other issues like IO being rejected, in the case of hfsplus, it will allocate a block by using that size and potentially write out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the latter function reads a different io_size.

Using a new min_io_size initally set to sb_min_blocksize works for the purposes of the original fix, since it will be set to the max between HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not initialized.

Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024 and 4096.

The produced KASAN report before the fix looks like this:

[ 419.944641] ================================================================== [ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a [ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678 [ 419.947612] [ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84 [ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 419.950035] Call Trace:
[ 419.950384] <TASK> [ 419.950676] dump_stack_lvl+0x57/0x78 [ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.951830] print_report+0x14c/0x49e [ 419.952361] ? ...

Please note that the description has been truncated due to length. Please refer to vendor advisory for the full description.

Tenable has extracted the preceding description block directly from the Tencent Linux security advisory.

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.

Solution

Update the affected packages.

See Also

https://mirrors.tencent.com/tlinux/errata/tssa-20250429.xml

Plugin Details

Severity: High

ID: 276429

File Name: tencentos_TSSA_2025_0429.nasl

Version: 1.1

Type: local

Published: 11/20/2025

Updated: 11/20/2025

Supported Sensors: Nessus

Risk Information

VPR

Risk Factor: Medium

Score: 6.7

CVSS v2

Risk Factor: High

Base Score: 9

Temporal Score: 6.7

Vector: CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C

CVSS Score Source: CVE-2024-47659

CVSS v3

Risk Factor: High

Base Score: 8.8

Temporal Score: 7.7

Vector: CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Temporal Vector: CVSS:3.0/E:U/RL:O/RC:C

Vulnerability Information

CPE: cpe:/o:tencent:tencentos_server:4, p-cpe:/a:tencent:tencentos_server:kernel

Required KB Items: Host/local_checks_enabled, Host/etc/os-release, Host/TencentOS/rpm-list, Host/cpu

Exploit Ease: No known exploits are available

Patch Publication Date: 7/2/2025

Vulnerability Publication Date: 9/4/2021

Reference Information

CVE: CVE-2023-52809, CVE-2023-52817, CVE-2024-39476, CVE-2024-43894, CVE-2024-46695, CVE-2024-46753, CVE-2024-46841, CVE-2024-47659, CVE-2024-47693, CVE-2024-48875, CVE-2024-49860, CVE-2024-50017, CVE-2024-50116, CVE-2024-50117, CVE-2024-50151, CVE-2024-50218, CVE-2024-50273, CVE-2024-50282, CVE-2024-53060, CVE-2024-53217, CVE-2024-53222, CVE-2024-56548, CVE-2024-56558, CVE-2024-56586, CVE-2024-56597, CVE-2024-56630, CVE-2024-56759, CVE-2024-56779, CVE-2024-57892