TencentOS Server 4: kernel (TSSA-2025:0348)

high Nessus Plugin ID 275917

Synopsis

The remote TencentOS Server 4 host is missing one or more security updates.

Description

The version of Tencent Linux installed on the remote TencentOS Server 4 host is prior to tested version. It is, therefore, affected by multiple vulnerabilities as referenced in the TSSA-2025:0348 advisory.

Package updates are available for TencentOS Server 4 that fix the following vulnerabilities:

CVE-2025-21957:
In the Linux kernel, the following vulnerability has been resolved:

drm/amdkfd: Correct the migration DMA map direction

The SVM DMA device map direction should be set the same as the DMA unmap setting, otherwise the DMA core will report the following warning.

Before finialize this solution, there're some discussion on the DMA mapping type(stream-based or coherent) in this KFD migration case, followed by https://lore.kernel.org/all/04d4ab32
[email protected]/T/.

As there's no dma_sync_single_for_*() in the DMA buffer accessed that because this migration operation should be sync properly and automatically. Give that there's might not be a performance problem in various cache sync policy of DMA sync. Therefore, in order to simplify the DMA direction setting alignment, let's set the DMA map direction as BIDIRECTIONAL.

[ 150.834218] WARNING: CPU: 8 PID: 1812 at kernel/dma/debug.c:1028 check_unmap+0x1cc/0x930 [ 150.834225] Modules linked in: amdgpu(OE) amdxcp drm_exec(OE) gpu_sched drm_buddy(OE) drm_ttm_helper(OE) ttm(OE) drm_suballoc_helper(OE) drm_display_helper(OE) drm_kms_helper(OE) i2c_algo_bit rpcsec_gss_krb5 auth_rpcgss nfsv4 nfs lockd grace netfs xt_conntrack xt_MASQUERADE nf_conntrack_netlink xfrm_user xfrm_algo iptable_nat xt_addrtype iptable_filter br_netfilter nvme_fabrics overlay nfnetlink_cttimeout nfnetlink openvswitch nsh nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 libcrc32c bridge stp llc sch_fq_codel intel_rapl_msr amd_atl intel_rapl_common snd_hda_codec_realtek snd_hda_codec_generic snd_hda_scodec_component snd_hda_codec_hdmi snd_hda_intel snd_intel_dspcfg edac_mce_amd snd_pci_acp6x snd_hda_codec snd_acp_config snd_hda_core snd_hwdep snd_soc_acpi kvm_amd sunrpc snd_pcm kvm binfmt_misc snd_seq_midi crct10dif_pclmul snd_seq_midi_event ghash_clmulni_intel sha512_ssse3 snd_rawmidi nls_iso8859_1 sha256_ssse3 sha1_ssse3 snd_seq aesni_intel snd_seq_device crypto_simd snd_timer cryptd input_leds [ 150.834310] wmi_bmof serio_raw k10temp rapl snd sp5100_tco ipmi_devintf soundcore ccp ipmi_msghandler cm32181 industrialio mac_hid msr parport_pc ppdev lp parport efi_pstore drm(OE) ip_tables x_tables pci_stub crc32_pclmul nvme ahci libahci i2c_piix4 r8169 nvme_core i2c_designware_pci realtek i2c_ccgx_ucsi video wmi hid_generic cdc_ether usbnet usbhid hid r8152 mii [ 150.834354] CPU: 8 PID: 1812 Comm: rocrtst64 Tainted: G OE 6.10.0-custom #492 [ 150.834358] Hardware name: AMD Majolica-RN/Majolica-RN, BIOS RMJ1009A 06/13/2021 [ 150.834360] RIP: 0010:check_unmap+0x1cc/0x930 [ 150.834363] Code: c0 4c 89 4d c8 e8 34 bf 86 00 4c 8b 4d c8 4c 8b 45 c0 48 8b 4d b8 48 89 c6 41 57 4c 89 ea 48 c7 c7 80 49 b4 84 e8 b4 81 f3 ff <0f> 0b 48 c7 c7 04 83 ac 84 e8 76 ba fc ff 41 8b 76 4c 49 8d 7e 50 [ 150.834365] RSP: 0018:ffffaac5023739e0 EFLAGS: 00010086 [ 150.834368] RAX: 0000000000000000 RBX: ffffffff8566a2e0 RCX: 0000000000000027 [ 150.834370] RDX: ffff8f6a8f621688 RSI: 0000000000000001 RDI: ffff8f6a8f621680 [ 150.834372] RBP: ffffaac502373a30 R08: 00000000000000c9 R09: ffffaac502373850 [ 150.834373] R10: ffffaac502373848 R11: ffffffff84f46328 R12: ffffaac502373a40 [ 150.834375] R13: ffff8f6741045330 R14: ffff8f6741a77700 R15: ffffffff84ac831b [ 150.834377] FS: 00007faf0fc94c00(0000) GS:ffff8f6a8f600000(0000) knlGS:0000000000000000 [ 150.834379] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 150.834381] CR2: 00007faf0b600020 CR3: 000000010a52e000 CR4: 0000000000350ef0 [ 150.834383] Call Trace:
[ 150.834385] <TASK> [ 150.834387] ? show_regs+0x6d/0x80 [ 150.834393] ? __warn+0x8c/0x140 [ 150.834397] ? check_unmap+0x1cc/0x930 [ 150.834400] ? report_bug+0x193/0x1a0 [ 150.834406] ? handle_bug+0x46/0x80 [ 150.834410] ? exc_invalid_op+0x1d/0x80 [ 150.834413] ? asm_exc_invalid_op+0x1f/0x30 [ 150.834420] ? check_unmap+0x1cc/0x930 [ 150.834425] debug_dma_unmap_page+0x86/0x90 [ 150.834431] ? srso_return_thunk+0x5/0x5f [ 150.834435]
---truncated---

CVE-2025-21925:
In the Linux kernel, the following vulnerability has been resolved:

wifi: mac80211: fix mbss changed flags corruption on 32 bit systems

On 32-bit systems, the size of an unsigned long is 4 bytes, while a u64 is 8 bytes. Therefore, when using or_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE), the code is incorrectly searching for a bit in a 32-bit variable that is expected to be 64 bits in size, leading to incorrect bit finding.

Solution: Ensure that the size of the bits variable is correctly adjusted for each architecture.

Call Trace:
? show_regs+0x54/0x58 ? __warn+0x6b/0xd4 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? report_bug+0x113/0x150 ? exc_overflow+0x30/0x30 ? handle_bug+0x27/0x44 ? exc_invalid_op+0x18/0x50 ? handle_exception+0xf6/0xf6 ? exc_overflow+0x30/0x30 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? exc_overflow+0x30/0x30 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? ieee80211_mesh_work+0xff/0x260 [mac80211] ? cfg80211_wiphy_work+0x72/0x98 [cfg80211] ? process_one_work+0xf1/0x1fc ? worker_thread+0x2c0/0x3b4 ? kthread+0xc7/0xf0 ? mod_delayed_work_on+0x4c/0x4c ? kthread_complete_and_exit+0x14/0x14 ? ret_from_fork+0x24/0x38 ? kthread_complete_and_exit+0x14/0x14 ? ret_from_fork_asm+0xf/0x14 ? entry_INT80_32+0xf0/0xf0

[restore no-op path for no changes]

CVE-2023-53012:
In the Linux kernel, the following vulnerability has been resolved:

HID: core: Fix assumption that Resolution Multipliers must be in Logical Collections

A report in 2019 by the syzbot fuzzer was found to be connected to two errors in the HID core associated with Resolution Multipliers. One of the errors was fixed by commit ea427a222d8b (HID: core: Fix deadloop in hid_apply_multiplier.), but the other has not been fixed.

This error arises because hid_apply_multipler() assumes that every Resolution Multiplier control is contained in a Logical Collection, i.e., there's no way the routine can ever set multiplier_collection to NULL. This is in spite of the fact that the function starts with a big comment saying:

* The Resolution Multiplier control must be contained in the same
* Logical Collection as the control(s) to which it is to be applied.
...
* If no Logical Collection is
* defined, the Resolution Multiplier is associated with all
* controls in the report.
* HID Usage Table, v1.12, Section 4.3.1, p30
*
* Thus, search from the current collection upwards until we find a
* logical collection...

The comment and the code overlook the possibility that none of the collections found may be a Logical Collection.

The fix is to set the multiplier_collection pointer to NULL if the collection found isn't a Logical Collection.

CVE-2025-21872:
In the Linux kernel, the following vulnerability has been resolved:

net: reenable NETIF_F_IPV6_CSUM offload for BIG TCP packets

The blamed commit disabled hardware offoad of IPv6 packets with extension headers on devices that advertise NETIF_F_IPV6_CSUM, based on the definition of that feature in skbuff.h:

* * - %NETIF_F_IPV6_CSUM
* - Driver (device) is only able to checksum plain
* TCP or UDP packets over IPv6. These are specifically
* unencapsulated packets of the form IPv6|TCP or
* IPv6|UDP where the Next Header field in the IPv6
* header is either TCP or UDP. IPv6 extension headers
* are not supported with this feature. This feature
* cannot be set in features for a device with
* NETIF_F_HW_CSUM also set. This feature is being
* DEPRECATED (see below).

The change causes skb_warn_bad_offload to fire for BIG TCP packets.

[ 496.310233] WARNING: CPU: 13 PID: 23472 at net/core/dev.c:3129 skb_warn_bad_offload+0xc4/0xe0

[ 496.310297] ? skb_warn_bad_offload+0xc4/0xe0 [ 496.310300] skb_checksum_help+0x129/0x1f0 [ 496.310303] skb_csum_hwoffload_help+0x150/0x1b0 [ 496.310306] validate_xmit_skb+0x159/0x270 [ 496.310309] validate_xmit_skb_list+0x41/0x70 [ 496.310312] sch_direct_xmit+0x5c/0x250 [ 496.310317] __qdisc_run+0x388/0x620

BIG TCP introduced an IPV6_TLV_JUMBO IPv6 extension header to communicate packet length, as this is an IPv6 jumbogram. But, the feature is only enabled on devices that support BIG TCP TSO. The header is only present for PF_PACKET taps like tcpdump, and not transmitted by physical devices.

For this specific case of extension headers that are not transmitted, return to the situation before the blamed commit and support hardware offload.

ipv6_has_hopopt_jumbo() tests not only whether this header is present, but also that it is the only extension header before a terminal (L4) header.

CVE-2025-21959:
In the Linux kernel, the following vulnerability has been resolved:

vxlan: Fix uninit-value in vxlan_vnifilter_dump()

KMSAN reported an uninit-value access in vxlan_vnifilter_dump() [1].

If the length of the netlink message payload is less than sizeof(struct tunnel_msg), vxlan_vnifilter_dump() accesses bytes beyond the message. This can lead to uninit-value access. Fix this by returning an error in such situations.

[1] BUG: KMSAN: uninit-value in vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 rtnl_dumpit+0xd5/0x2f0 net/core/rtnetlink.c:6786 netlink_dump+0x93e/0x15f0 net/netlink/af_netlink.c:2317
__netlink_dump_start+0x716/0xd60 net/netlink/af_netlink.c:2432 netlink_dump_start include/linux/netlink.h:340 [inline] rtnetlink_dump_start net/core/rtnetlink.c:6815 [inline] rtnetlink_rcv_msg+0x1256/0x14a0 net/core/rtnetlink.c:6882 netlink_rcv_skb+0x467/0x660 net/netlink/af_netlink.c:2542 rtnetlink_rcv+0x35/0x40 net/core/rtnetlink.c:6944 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0xed6/0x1290 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x1092/0x1230 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:726
____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583
___sys_sendmsg+0x271/0x3b0 net/socket.c:2637
__sys_sendmsg net/socket.c:2669 [inline]
__do_sys_sendmsg net/socket.c:2674 [inline]
__se_sys_sendmsg net/socket.c:2672 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f

Uninit was created at:
slab_post_alloc_hook mm/slub.c:4110 [inline] slab_alloc_node mm/slub.c:4153 [inline] kmem_cache_alloc_node_noprof+0x800/0xe80 mm/slub.c:4205 kmalloc_reserve+0x13b/0x4b0 net/core/skbuff.c:587
__alloc_skb+0x347/0x7d0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1323 [inline] netlink_alloc_large_skb+0xa5/0x280 net/netlink/af_netlink.c:1196 netlink_sendmsg+0xac9/0x1230 net/netlink/af_netlink.c:1866 sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:726
____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583
___sys_sendmsg+0x271/0x3b0 net/socket.c:2637
__sys_sendmsg net/socket.c:2669 [inline]
__do_sys_sendmsg net/socket.c:2674 [inline]
__se_sys_sendmsg net/socket.c:2672 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f

CPU: 0 UID: 0 PID: 30991 Comm: syz.4.10630 Not tainted 6.12.0-10694-gc44daa7e3c73 #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014

CVE-2025-21986:
In the Linux kernel, the following vulnerability has been resolved:

bpf: Send signals asynchronously if !preemptible

BPF programs can execute in all kinds of contexts and when a program running in a non-preemptible context uses the bpf_send_signal() kfunc, it will cause issues because this kfunc can sleep.
Change `irqs_disabled()` to `!preemptible()`.

CVE-2025-21960:
In the Linux kernel, the following vulnerability has been resolved:

nbd: don't allow reconnect after disconnect

Following process can cause nbd_config UAF:

1) grab nbd_config temporarily;

2) nbd_genl_disconnect() flush all recv_work() and release the initial reference:

nbd_genl_disconnect nbd_disconnect_and_put nbd_disconnect flush_workqueue(nbd->recv_workq) if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...)) nbd_config_put
-> due to step 1), reference is still not zero

3) nbd_genl_reconfigure() queue recv_work() again;

nbd_genl_reconfigure config = nbd_get_config_unlocked(nbd) if (!config)
-> succeed if (!test_bit(NBD_RT_BOUND, ...))
-> succeed nbd_reconnect_socket queue_work(nbd->recv_workq, &args->work)

4) step 1) release the reference;

5) Finially, recv_work() will trigger UAF:

recv_work nbd_config_put(nbd)
-> nbd_config is freed atomic_dec(&config->recv_threads)
-> UAF

Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so that nbd_genl_reconfigure() will fail.

CVE-2025-22009:
In the Linux kernel, the following vulnerability has been resolved:

bpf, test_run: Fix use-after-free issue in eth_skb_pkt_type()

KMSAN reported a use-after-free issue in eth_skb_pkt_type()[1]. The cause of the issue was that eth_skb_pkt_type() accessed skb's data that didn't contain an Ethernet header. This occurs when bpf_prog_test_run_xdp() passes an invalid value as the user_data argument to bpf_test_init().

Fix this by returning an error when user_data is less than ETH_HLEN in bpf_test_init(). Additionally, remove the check for if (user_size > size) as it is unnecessary.

[1] BUG: KMSAN: use-after-free in eth_skb_pkt_type include/linux/etherdevice.h:627 [inline] BUG: KMSAN: use-after-free in eth_type_trans+0x4ee/0x980 net/ethernet/eth.c:165 eth_skb_pkt_type include/linux/etherdevice.h:627 [inline] eth_type_trans+0x4ee/0x980 net/ethernet/eth.c:165
__xdp_build_skb_from_frame+0x5a8/0xa50 net/core/xdp.c:635 xdp_recv_frames net/bpf/test_run.c:272 [inline] xdp_test_run_batch net/bpf/test_run.c:361 [inline] bpf_test_run_xdp_live+0x2954/0x3330 net/bpf/test_run.c:390 bpf_prog_test_run_xdp+0x148e/0x1b10 net/bpf/test_run.c:1318 bpf_prog_test_run+0x5b7/0xa30 kernel/bpf/syscall.c:4371
__sys_bpf+0x6a6/0xe20 kernel/bpf/syscall.c:5777
__do_sys_bpf kernel/bpf/syscall.c:5866 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5864 [inline]
__x64_sys_bpf+0xa4/0xf0 kernel/bpf/syscall.c:5864 x64_sys_call+0x2ea0/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:322 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f

Uninit was created at:
free_pages_prepare mm/page_alloc.c:1056 [inline] free_unref_page+0x156/0x1320 mm/page_alloc.c:2657
__free_pages+0xa3/0x1b0 mm/page_alloc.c:4838 bpf_ringbuf_free kernel/bpf/ringbuf.c:226 [inline] ringbuf_map_free+0xff/0x1e0 kernel/bpf/ringbuf.c:235 bpf_map_free kernel/bpf/syscall.c:838 [inline] bpf_map_free_deferred+0x17c/0x310 kernel/bpf/syscall.c:862 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa2b/0x1b60 kernel/workqueue.c:3310 worker_thread+0xedf/0x1550 kernel/workqueue.c:3391 kthread+0x535/0x6b0 kernel/kthread.c:389 ret_from_fork+0x6e/0x90 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

CPU: 1 UID: 0 PID: 17276 Comm: syz.1.16450 Not tainted 6.12.0-05490-g9bb88c659673 #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014

CVE-2024-50294:
In the Linux kernel, the following vulnerability has been resolved:

sched/core: Disable page allocation in task_tick_mm_cid()

With KASAN and PREEMPT_RT enabled, calling task_work_add() in task_tick_mm_cid() may cause the following splat.

[ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe [ 63.696416] preempt_count: 10001, expected: 0 [ 63.696416] RCU nest depth: 1, expected: 1

This problem is caused by the following call trace.

sched_tick() [ acquire rq->__lock ]
-> task_tick_mm_cid()
-> task_work_add()
-> __kasan_record_aux_stack()
-> kasan_save_stack()
-> stack_depot_save_flags()
-> alloc_pages_mpol_noprof()
-> __alloc_pages_noprof()
-> get_page_from_freelist()
-> rmqueue()
-> rmqueue_pcplist()
-> __rmqueue_pcplist()
-> rmqueue_bulk()
-> rt_spin_lock()

The rq lock is a raw_spinlock_t. We can't sleep while holding it. IOW, we can't call alloc_pages() in stack_depot_save_flags().

The task_tick_mm_cid() function with its task_work_add() call was introduced by commit 223baf9d17f2 (sched: Fix performance regression introduced by mm_cid) in v6.4 kernel.

Fortunately, there is a kasan_record_aux_stack_noalloc() variant that calls stack_depot_save_flags() while not allowing it to allocate new pages. To allow task_tick_mm_cid() to use task_work without page allocation, a new TWAF_NO_ALLOC flag is added to enable calling kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack() if set. The task_tick_mm_cid() function is modified to add this new flag.

The possible downside is the missing stack trace in a KASAN report due to new page allocation required when task_work_add_noallloc() is called which should be rare.

CVE-2025-21978:
In the Linux kernel, the following vulnerability has been resolved:

bpf: Make sure internal and UAPI bpf_redirect flags don't overlap

The bpf_redirect_info is shared between the SKB and XDP redirect paths, and the two paths use the same numeric flag values in the ri->flags field (specifically, BPF_F_BROADCAST == BPF_F_NEXTHOP). This means that if skb bpf_redirect_neigh() is used with a non-NULL params argument and, subsequently, an XDP redirect is performed using the same bpf_redirect_info struct, the XDP path will get confused and end up crashing, which syzbot managed to trigger.

With the stack-allocated bpf_redirect_info, the structure is no longer shared between the SKB and XDP paths, so the crash doesn't happen anymore. However, different code paths using identically-numbered flag values in the same struct field still seems like a bit of a mess, so this patch cleans that up by moving the flag definitions together and redefining the three flags in BPF_F_REDIRECT_INTERNAL to not overlap with the flags used for XDP. It also adds a BUILD_BUG_ON() check to make sure the overlap is not re-introduced by mistake.

CVE-2025-21891:
In the Linux kernel, the following vulnerability has been resolved:

cxl/port: Fix use-after-free, permit out-of-order decoder shutdown

In support of investigating an initialization failure report [1], cxl_test was updated to register mock memory-devices after the mock root-port/bus device had been registered. That led to cxl_test crashing with a use-after-free bug with the following signature:

cxl_port_attach_region: cxl region3: cxl_host_bridge.0:port3 decoder3.0 add: mem0:decoder7.0 @ 0 next:
cxl_switch_uport.0 nr_eps: 1 nr_targets: 1 cxl_port_attach_region: cxl region3: cxl_host_bridge.0:port3 decoder3.0 add: mem4:decoder14.0 @ 1 next:
cxl_switch_uport.0 nr_eps: 2 nr_targets: 1 cxl_port_setup_targets: cxl region3: cxl_switch_uport.0:port6 target[0] = cxl_switch_dport.0 for mem0:decoder7.0 @ 0 1) cxl_port_setup_targets: cxl region3: cxl_switch_uport.0:port6 target[1] = cxl_switch_dport.4 for mem4:decoder14.0 @ 1 [..] cxld_unregister: cxl decoder14.0:
cxl_region_decode_reset: cxl_region region3:
mock_decoder_reset: cxl_port port3: decoder3.0 reset 2) mock_decoder_reset: cxl_port port3: decoder3.0: out of order reset, expected decoder3.1 cxl_endpoint_decoder_release: cxl decoder14.0:
[..] cxld_unregister: cxl decoder7.0:
3) cxl_region_decode_reset: cxl_region region3:
Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bc3: 0000 [#1] PREEMPT SMP PTI [..] RIP: 0010:to_cxl_port+0x8/0x60 [cxl_core] [..] Call Trace:
<TASK> cxl_region_decode_reset+0x69/0x190 [cxl_core] cxl_region_detach+0xe8/0x210 [cxl_core] cxl_decoder_kill_region+0x27/0x40 [cxl_core] cxld_unregister+0x5d/0x60 [cxl_core]

At 1) a region has been established with 2 endpoint decoders (7.0 and 14.0). Those endpoints share a common switch-decoder in the topology (3.0). At teardown, 2), decoder14.0 is the first to be removed and hits the out of order reset case in the switch decoder. The effect though is that region3 cleanup is aborted leaving it in-tact and referencing decoder14.0. At 3) the second attempt to teardown region3 trips over the stale decoder14.0 object which has long since been deleted.

The fix here is to recognize that the CXL specification places no mandate on in-order shutdown of switch-decoders, the driver enforces in-order allocation, and hardware enforces in-order commit. So, rather than fail and leave objects dangling, always remove them.

In support of making cxl_region_decode_reset() always succeed, cxl_region_invalidate_memregion() failures are turned into warnings.
Crashing the kernel is ok there since system integrity is at risk if caches cannot be managed around physical address mutation events like CXL region destruction.

A new device_for_each_child_reverse_from() is added to cleanup port->commit_end after all dependent decoders have been disabled. In other words if decoders are allocated 0->1->2 and disabled 1->2->0 then port->commit_end only decrements from 2 after 2 has been disabled, and it decrements all the way to zero since 1 was disabled previously.

CVE-2025-21934:
In the Linux kernel, the following vulnerability has been resolved:

ACPI: CPPC: Make rmw_lock a raw_spin_lock

The following BUG was triggered:

============================= [ BUG: Invalid wait context ] 6.12.0-rc2-XXX #406 Not tainted
----------------------------- kworker/1:1/62 is trying to lock:
ffffff8801593030 (&cpc_ptr->rmw_lock){+.+.}-{3:3}, at: cpc_write+0xcc/0x370 other info that might help us debug this:
context-{5:5} 2 locks held by kworker/1:1/62:
#0: ffffff897ef5ec98 (&rq->__lock){-.-.}-{2:2}, at: raw_spin_rq_lock_nested+0x2c/0x50 #1: ffffff880154e238 (&sg_policy->update_lock){....}-{2:2}, at: sugov_update_shared+0x3c/0x280 stack backtrace:
CPU: 1 UID: 0 PID: 62 Comm: kworker/1:1 Not tainted 6.12.0-rc2-g9654bd3e8806 #406 Workqueue: 0x0 (events) Call trace:
dump_backtrace+0xa4/0x130 show_stack+0x20/0x38 dump_stack_lvl+0x90/0xd0 dump_stack+0x18/0x28
__lock_acquire+0x480/0x1ad8 lock_acquire+0x114/0x310
_raw_spin_lock+0x50/0x70 cpc_write+0xcc/0x370 cppc_set_perf+0xa0/0x3a8 cppc_cpufreq_fast_switch+0x40/0xc0 cpufreq_driver_fast_switch+0x4c/0x218 sugov_update_shared+0x234/0x280 update_load_avg+0x6ec/0x7b8 dequeue_entities+0x108/0x830 dequeue_task_fair+0x58/0x408
__schedule+0x4f0/0x1070 schedule+0x54/0x130 worker_thread+0xc0/0x2e8 kthread+0x130/0x148 ret_from_fork+0x10/0x20

sugov_update_shared() locks a raw_spinlock while cpc_write() locks a spinlock.

To have a correct wait-type order, update rmw_lock to a raw spinlock and ensure that interrupts will be disabled on the CPU holding it.

[ rjw: Changelog edits ]

CVE-2024-26927:
In the Linux kernel, the following vulnerability has been resolved:

signal: restore the override_rlimit logic

Prior to commit d64696905554 (Reimplement RLIMIT_SIGPENDING on top of ucounts) UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of signals. However now it's enforced unconditionally, even if override_rlimit is set. This behavior change caused production issues.

For example, if the limit is reached and a process receives a SIGSEGV signal, sigqueue_alloc fails to allocate the necessary resources for the signal delivery, preventing the signal from being delivered with siginfo.
This prevents the process from correctly identifying the fault address and handling the error. From the user-space perspective, applications are unaware that the limit has been reached and that the siginfo is effectively 'corrupted'. This can lead to unpredictable behavior and crashes, as we observed with java applications.

Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip the comparison to max there if override_rlimit is set. This effectively restores the old behavior.

CVE-2024-46845:
In the Linux kernel, the following vulnerability has been resolved:

rxrpc: Fix missing locking causing hanging calls

If a call gets aborted (e.g. because kafs saw a signal) between it being queued for connection and the I/O thread picking up the call, the abort will be prioritised over the connection and it will be removed from local->new_client_calls by rxrpc_disconnect_client_call() without a lock being held. This may cause other calls on the list to disappear if a race occurs.

Fix this by taking the client_call_lock when removing a call from whatever list its ->wait_link happens to be on.

CVE-2025-21905:
In the Linux kernel, the following vulnerability has been resolved:

ipv4: ip_tunnel: Fix suspicious RCU usage warning in ip_tunnel_init_flow()

There are code paths from which the function is called without holding the RCU read lock, resulting in a suspicious RCU usage warning [1].

Fix by using l3mdev_master_upper_ifindex_by_index() which will acquire the RCU read lock before calling l3mdev_master_upper_ifindex_by_index_rcu().

[1] WARNING: suspicious RCU usage 6.12.0-rc3-custom-gac8f72681cf2 #141 Not tainted
----------------------------- net/core/dev.c:876 RCU-list traversed in non-reader section!!

other info that might help us debu ...

Please note that the description has been truncated due to length. Please refer to vendor advisory for the full description.

Tenable has extracted the preceding description block directly from the Tencent Linux security advisory.

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.

Solution

Update the affected packages.

See Also

https://mirrors.tencent.com/tlinux/errata/tssa-20250348.xml

Plugin Details

Severity: High

ID: 275917

File Name: tencentos_TSSA_2025_0348.nasl

Version: 1.1

Type: local

Published: 11/20/2025

Updated: 11/20/2025

Supported Sensors: Nessus

Risk Information

VPR

Risk Factor: High

Score: 7.3

CVSS v2

Risk Factor: Medium

Base Score: 6.8

Temporal Score: 5

Vector: CVSS2#AV:L/AC:L/Au:S/C:C/I:C/A:C

CVSS Score Source: CVE-2025-21991

CVSS v3

Risk Factor: High

Base Score: 8.8

Temporal Score: 7.7

Vector: CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H

Temporal Vector: CVSS:3.0/E:U/RL:O/RC:C

CVSS Score Source: CVE-2024-35814

Vulnerability Information

CPE: p-cpe:/a:tencent:tencentos_server:kernel, cpe:/o:tencent:tencentos_server:4

Required KB Items: Host/local_checks_enabled, Host/cpu, Host/etc/os-release, Host/TencentOS/rpm-list

Exploit Ease: No known exploits are available

Patch Publication Date: 6/19/2025

Vulnerability Publication Date: 12/12/2023

Reference Information

CVE: CVE-2023-53012, CVE-2024-26927, CVE-2024-26983, CVE-2024-27022, CVE-2024-35814, CVE-2024-38576, CVE-2024-38577, CVE-2024-40909, CVE-2024-42280, CVE-2024-46747, CVE-2024-46845, CVE-2024-46865, CVE-2024-47682, CVE-2024-47684, CVE-2024-47695, CVE-2024-50140, CVE-2024-50163, CVE-2024-50226, CVE-2024-50249, CVE-2024-50271, CVE-2024-50294, CVE-2024-53042, CVE-2024-53091, CVE-2024-53128, CVE-2024-57897, CVE-2024-57899, CVE-2024-57986, CVE-2024-58090, CVE-2025-21629, CVE-2025-21716, CVE-2025-21728, CVE-2025-21731, CVE-2025-21867, CVE-2025-21872, CVE-2025-21873, CVE-2025-21875, CVE-2025-21877, CVE-2025-21881, CVE-2025-21883, CVE-2025-21889, CVE-2025-21891, CVE-2025-21895, CVE-2025-21898, CVE-2025-21905, CVE-2025-21908, CVE-2025-21909, CVE-2025-21910, CVE-2025-21913, CVE-2025-21916, CVE-2025-21918, CVE-2025-21919, CVE-2025-21920, CVE-2025-21922, CVE-2025-21923, CVE-2025-21924, CVE-2025-21925, CVE-2025-21934, CVE-2025-21935, CVE-2025-21936, CVE-2025-21937, CVE-2025-21938, CVE-2025-21941, CVE-2025-21943, CVE-2025-21948, CVE-2025-21951, CVE-2025-21955, CVE-2025-21956, CVE-2025-21957, CVE-2025-21959, CVE-2025-21960, CVE-2025-21962, CVE-2025-21963, CVE-2025-21964, CVE-2025-21966, CVE-2025-21967, CVE-2025-21968, CVE-2025-21969, CVE-2025-21970, CVE-2025-21971, CVE-2025-21975, CVE-2025-21978, CVE-2025-21979, CVE-2025-21980, CVE-2025-21981, CVE-2025-21986, CVE-2025-21991, CVE-2025-21992, CVE-2025-21993, CVE-2025-21995, CVE-2025-21996, CVE-2025-21997, CVE-2025-21999, CVE-2025-22004, CVE-2025-22005, CVE-2025-22007, CVE-2025-22008, CVE-2025-22009, CVE-2025-22010, CVE-2025-22013, CVE-2025-22015