Updated CVEs

IDDescriptionSeverity
CVE-2025-2747An authentication bypass vulnerability in Kentico Xperience allows authentication bypass via the Staging Sync Server component password handling for the server defined None type. Authentication bypass allows an attacker to control administrative objects.This issue affects Xperience through 13.0.178.
critical
CVE-2025-2746An authentication bypass vulnerability in Kentico Xperience allows authentication bypass via the Staging Sync Server password handling of empty SHA1 usernames in digest authentication. Authentication bypass allows an attacker to control administrative objects.This issue affects Xperience through 13.0.172.
critical
CVE-2025-27438A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
high
CVE-2025-26517StorageGRID (formerly StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 are susceptible to a privilege escalation vulnerability. Successful exploit could allow an unauthorized authenticated attacker to discover Grid node names and IP addresses or modify Storage Grades.
medium
CVE-2025-26516StorageGRID (formerly StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 are susceptible to a Denial of Service vulnerability. Successful exploit could allow an unauthenticated attacker to cause a Denial of Service on the Admin node.
medium
CVE-2025-26515StorageGRID (formerly StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 without Single Sign-on enabled are susceptible to a Server-Side Request Forgery (SSRF) vulnerability. Successful exploit could allow an unauthenticated attacker to change the password of any Grid Manager or Tenant Manager non-federated user.
high
CVE-2025-26514StorageGRID (formerly StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 are susceptible to a Reflected Cross-Site Scripting vulnerability. Successful exploit could allow an attacker to view or modify configuration settings or add or modify user accounts but requires the attacker to know specific information about the target instance and then trick a privileged user into clicking a specially crafted link.
medium
CVE-2025-25973A stored Cross Site Scripting vulnerability in the "related recommendations" feature in Ppress v.0.0.9 allows a remote attacker to execute arbitrary code via a crafted script to the article.title, article.category, and article.tags parameters.
medium
CVE-2025-25267A vulnerability has been identified in Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application does not properly restrict the scope of files accessible to the simulation model. This could allow an unauthorized attacker to compromise the confidentiality of the system.
medium
CVE-2025-25266A vulnerability has been identified in Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application does not properly restrict access to the file deletion functionality. This could allow an unauthorized attacker to delete files even when access to the system should be prohibited, resulting in potential data loss or unauthorized modification of system files.
high
CVE-2025-23402A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain a use-after-free vulnerability that could be triggered while parsing specially crafted WRL files. An attacker could leverage this vulnerability to execute code in the context of the current process.
high
CVE-2025-23401A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
high
CVE-2025-23400A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
high
CVE-2025-23399A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
high
CVE-2025-23398A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
high
CVE-2025-23397A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
high
CVE-2025-23396A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process.
high
CVE-2025-23360NVIDIA Nemo Framework contains a vulnerability where a user could cause a relative path traversal issue by arbitrary file write. A successful exploit of this vulnerability may lead to code execution and data tampering.
critical
CVE-2025-23303NVIDIA NeMo Framework for all platforms contains a vulnerability where a user could cause a deserialization of untrusted data by remote code execution. A successful exploit of this vulnerability might lead to code execution and data tampering.
critical
CVE-2025-2292Xorcom CompletePBX is vulnerable to an authenticated path traversal, allowing for arbitrary file reads via the Backup and Restore functionality.This issue affects CompletePBX: through 5.2.35.
medium
CVE-2025-22481A command injection vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained user access to execute arbitrary commands. We have already fixed the vulnerability in the following versions: QTS 5.2.4.3079 build 20250321 and later QuTS hero h5.2.4.3079 build 20250321 and later
high
CVE-2025-21704In the Linux kernel, the following vulnerability has been resolved: usb: cdc-acm: Check control transfer buffer size before access If the first fragment is shorter than struct usb_cdc_notification, we can't calculate an expected_size. Log an error and discard the notification instead of reading lengths from memory outside the received data, which can lead to memory corruption when the expected_size decreases between fragments, causing `expected_size - acm->nb_index` to wrap. This issue has been present since the beginning of git history; however, it only leads to memory corruption since commit ea2583529cd1 ("cdc-acm: reassemble fragmented notifications"). A mitigating factor is that acm_ctrl_irq() can only execute after userspace has opened /dev/ttyACM*; but if ModemManager is running, ModemManager will do that automatically depending on the USB device's vendor/product IDs and its other interfaces.
high
CVE-2025-21608Meshtastic is an open source mesh networking solution. In affected firmware versions crafted packets over MQTT are able to appear as a DM in client to a node even though they were not decoded with PKC. This issue has been addressed in version 2.5.19 and all users are advised to upgrade. There are no known workarounds for this vulnerability.
medium
CVE-2025-10813A vulnerability was found in code-projects Hostel Management System 1.0. Affected is an unknown function of the file /justines/admin/mod_reports/index.php. The manipulation of the argument Home results in sql injection. It is possible to launch the attack remotely. The exploit has been made public and could be used.
medium
CVE-2025-10812A vulnerability has been found in code-projects Hostel Management System 1.0. This impacts an unknown function of the file /justines/admin/mod_amenities/index.php?view=view. The manipulation of the argument ID leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.
medium
CVE-2025-10784A security vulnerability has been detected in Campcodes Online Learning Management System 1.0. Affected by this issue is some unknown functionality of the file /admin/edit_subject.php. The manipulation of the argument subject_code leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed publicly and may be used.
medium
CVE-2025-10783A weakness has been identified in Campcodes Online Learning Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /admin/add_subject.php. Executing manipulation of the argument subject_code can lead to sql injection. The attack may be performed from remote. The exploit has been made available to the public and could be exploited.
medium
CVE-2025-10782A security flaw has been discovered in Campcodes Online Learning Management System 1.0. Affected is an unknown function of the file /admin/class.php. Performing manipulation of the argument class_name results in sql injection. The attack is possible to be carried out remotely. The exploit has been released to the public and may be exploited.
medium
CVE-2025-10781A vulnerability was identified in Campcodes Online Learning Management System 1.0. This impacts an unknown function of the file /admin/edit_class.php. Such manipulation of the argument class_name leads to sql injection. The attack can be executed remotely. The exploit is publicly available and might be used.
medium
CVE-2025-10774A weakness has been identified in Ruijie 6000-E10 up to 2.4.3.6-20171117. This affects an unknown part of the file /view/vpn/autovpn/sub_commit.php. This manipulation of the argument key causes os command injection. It is possible to initiate the attack remotely. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way.
medium
CVE-2024-7954The porte_plume plugin used by SPIP before 4.30-alpha2, 4.2.13, and 4.1.16 is vulnerable to an arbitrary code execution vulnerability. A remote and unauthenticated attacker can execute arbitrary PHP as the SPIP user by sending a crafted HTTP request.
critical
CVE-2024-6238pgAdmin <= 8.8 has an installation Directory permission issue. Because of this issue, attackers can gain unauthorised access to the installation directory on the Debian or RHEL 8 platforms.
medium
CVE-2024-56805A buffer overflow vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained user access to modify memory or crash processes. We have already fixed the vulnerability in the following versions: QTS 5.2.4.3079 build 20250321 and later QuTS hero h5.2.4.3079 build 20250321 and later
medium
CVE-2024-56597In the Linux kernel, the following vulnerability has been resolved: jfs: fix shift-out-of-bounds in dbSplit When dmt_budmin is less than zero, it causes errors in the later stages. Added a check to return an error beforehand in dbAllocCtl itself.
high
CVE-2024-56590In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_core: Fix not checking skb length on hci_acldata_packet This fixes not checking if skb really contains an ACL header otherwise the code may attempt to access some uninitilized/invalid memory past the valid skb->data.
medium
CVE-2024-56585In the Linux kernel, the following vulnerability has been resolved: LoongArch: Fix sleeping in atomic context for PREEMPT_RT Commit bab1c299f3945ffe79 ("LoongArch: Fix sleeping in atomic context in setup_tlb_handler()") changes the gfp flag from GFP_KERNEL to GFP_ATOMIC for alloc_pages_node(). However, for PREEMPT_RT kernels we can still get a "sleeping in atomic context" error: [ 0.372259] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 0.372266] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1 [ 0.372268] preempt_count: 1, expected: 0 [ 0.372270] RCU nest depth: 1, expected: 1 [ 0.372272] 3 locks held by swapper/1/0: [ 0.372274] #0: 900000000c9f5e60 (&pcp->lock){+.+.}-{3:3}, at: get_page_from_freelist+0x524/0x1c60 [ 0.372294] #1: 90000000087013b8 (rcu_read_lock){....}-{1:3}, at: rt_spin_trylock+0x50/0x140 [ 0.372305] #2: 900000047fffd388 (&zone->lock){+.+.}-{3:3}, at: __rmqueue_pcplist+0x30c/0xea0 [ 0.372314] irq event stamp: 0 [ 0.372316] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [ 0.372322] hardirqs last disabled at (0): [<9000000005947320>] copy_process+0x9c0/0x26e0 [ 0.372329] softirqs last enabled at (0): [<9000000005947320>] copy_process+0x9c0/0x26e0 [ 0.372335] softirqs last disabled at (0): [<0000000000000000>] 0x0 [ 0.372341] CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.12.0-rc7+ #1891 [ 0.372346] Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 [ 0.372349] Stack : 0000000000000089 9000000005a0db9c 90000000071519c8 9000000100388000 [ 0.372486] 900000010038b890 0000000000000000 900000010038b898 9000000007e53788 [ 0.372492] 900000000815bcc8 900000000815bcc0 900000010038b700 0000000000000001 [ 0.372498] 0000000000000001 4b031894b9d6b725 00000000055ec000 9000000100338fc0 [ 0.372503] 00000000000000c4 0000000000000001 000000000000002d 0000000000000003 [ 0.372509] 0000000000000030 0000000000000003 00000000055ec000 0000000000000003 [ 0.372515] 900000000806d000 9000000007e53788 00000000000000b0 0000000000000004 [ 0.372521] 0000000000000000 0000000000000000 900000000c9f5f10 0000000000000000 [ 0.372526] 90000000076f12d8 9000000007e53788 9000000005924778 0000000000000000 [ 0.372532] 00000000000000b0 0000000000000004 0000000000000000 0000000000070000 [ 0.372537] ... [ 0.372540] Call Trace: [ 0.372542] [<9000000005924778>] show_stack+0x38/0x180 [ 0.372548] [<90000000071519c4>] dump_stack_lvl+0x94/0xe4 [ 0.372555] [<900000000599b880>] __might_resched+0x1a0/0x260 [ 0.372561] [<90000000071675cc>] rt_spin_lock+0x4c/0x140 [ 0.372565] [<9000000005cbb768>] __rmqueue_pcplist+0x308/0xea0 [ 0.372570] [<9000000005cbed84>] get_page_from_freelist+0x564/0x1c60 [ 0.372575] [<9000000005cc0d98>] __alloc_pages_noprof+0x218/0x1820 [ 0.372580] [<900000000593b36c>] tlb_init+0x1ac/0x298 [ 0.372585] [<9000000005924b74>] per_cpu_trap_init+0x114/0x140 [ 0.372589] [<9000000005921964>] cpu_probe+0x4e4/0xa60 [ 0.372592] [<9000000005934874>] start_secondary+0x34/0xc0 [ 0.372599] [<900000000715615c>] smpboot_entry+0x64/0x6c This is because in PREEMPT_RT kernels normal spinlocks are replaced by rt spinlocks and rt_spin_lock() will cause sleeping. Fix it by disabling NUMA optimization completely for PREEMPT_RT kernels.
medium
CVE-2024-56576In the Linux kernel, the following vulnerability has been resolved: media: i2c: tc358743: Fix crash in the probe error path when using polling If an error occurs in the probe() function, we should remove the polling timer that was alarmed earlier, otherwise the timer is called with arguments that are already freed, which results in a crash. ------------[ cut here ]------------ WARNING: CPU: 3 PID: 0 at kernel/time/timer.c:1830 __run_timers+0x244/0x268 Modules linked in: CPU: 3 UID: 0 PID: 0 Comm: swapper/3 Not tainted 6.11.0 #226 Hardware name: Diasom DS-RK3568-SOM-EVB (DT) pstate: 804000c9 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __run_timers+0x244/0x268 lr : __run_timers+0x1d4/0x268 sp : ffffff80eff2baf0 x29: ffffff80eff2bb50 x28: 7fffffffffffffff x27: ffffff80eff2bb00 x26: ffffffc080f669c0 x25: ffffff80efef6bf0 x24: ffffff80eff2bb00 x23: 0000000000000000 x22: dead000000000122 x21: 0000000000000000 x20: ffffff80efef6b80 x19: ffffff80041c8bf8 x18: ffffffffffffffff x17: ffffffc06f146000 x16: ffffff80eff27dc0 x15: 000000000000003e x14: 0000000000000000 x13: 00000000000054da x12: 0000000000000000 x11: 00000000000639c0 x10: 000000000000000c x9 : 0000000000000009 x8 : ffffff80eff2cb40 x7 : ffffff80eff2cb40 x6 : ffffff8002bee480 x5 : ffffffc080cb2220 x4 : ffffffc080cb2150 x3 : 00000000000f4240 x2 : 0000000000000102 x1 : ffffff80eff2bb00 x0 : ffffff80041c8bf0 Call trace: __run_timers+0x244/0x268 timer_expire_remote+0x50/0x68 tmigr_handle_remote+0x388/0x39c run_timer_softirq+0x38/0x44 handle_softirqs+0x138/0x298 __do_softirq+0x14/0x20 ____do_softirq+0x10/0x1c call_on_irq_stack+0x24/0x4c do_softirq_own_stack+0x1c/0x2c irq_exit_rcu+0x9c/0xcc el1_interrupt+0x48/0xc0 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x7c/0x80 default_idle_call+0x34/0x68 do_idle+0x23c/0x294 cpu_startup_entry+0x38/0x3c secondary_start_kernel+0x128/0x160 __secondary_switched+0xb8/0xbc ---[ end trace 0000000000000000 ]---
medium
CVE-2024-56566In the Linux kernel, the following vulnerability has been resolved: mm/slub: Avoid list corruption when removing a slab from the full list Boot with slub_debug=UFPZ. If allocated object failed in alloc_consistency_checks, all objects of the slab will be marked as used, and then the slab will be removed from the partial list. When an object belonging to the slab got freed later, the remove_full() function is called. Because the slab is neither on the partial list nor on the full list, it eventually lead to a list corruption (actually a list poison being detected). So we need to mark and isolate the slab page with metadata corruption, do not put it back in circulation. Because the debug caches avoid all the fastpaths, reusing the frozen bit to mark slab page with metadata corruption seems to be fine. [ 4277.385669] list_del corruption, ffffea00044b3e50->next is LIST_POISON1 (dead000000000100) [ 4277.387023] ------------[ cut here ]------------ [ 4277.387880] kernel BUG at lib/list_debug.c:56! [ 4277.388680] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 4277.389562] CPU: 5 PID: 90 Comm: kworker/5:1 Kdump: loaded Tainted: G OE 6.6.1-1 #1 [ 4277.392113] Workqueue: xfs-inodegc/vda1 xfs_inodegc_worker [xfs] [ 4277.393551] RIP: 0010:__list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.394518] Code: 48 91 82 e8 37 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 28 49 91 82 e8 26 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 58 49 91 [ 4277.397292] RSP: 0018:ffffc90000333b38 EFLAGS: 00010082 [ 4277.398202] RAX: 000000000000004e RBX: ffffea00044b3e50 RCX: 0000000000000000 [ 4277.399340] RDX: 0000000000000002 RSI: ffffffff828f8715 RDI: 00000000ffffffff [ 4277.400545] RBP: ffffea00044b3e40 R08: 0000000000000000 R09: ffffc900003339f0 [ 4277.401710] R10: 0000000000000003 R11: ffffffff82d44088 R12: ffff888112cf9910 [ 4277.402887] R13: 0000000000000001 R14: 0000000000000001 R15: ffff8881000424c0 [ 4277.404049] FS: 0000000000000000(0000) GS:ffff88842fd40000(0000) knlGS:0000000000000000 [ 4277.405357] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4277.406389] CR2: 00007f2ad0b24000 CR3: 0000000102a3a006 CR4: 00000000007706e0 [ 4277.407589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4277.408780] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 4277.410000] PKRU: 55555554 [ 4277.410645] Call Trace: [ 4277.411234] <TASK> [ 4277.411777] ? die+0x32/0x80 [ 4277.412439] ? do_trap+0xd6/0x100 [ 4277.413150] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.414158] ? do_error_trap+0x6a/0x90 [ 4277.414948] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.415915] ? exc_invalid_op+0x4c/0x60 [ 4277.416710] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.417675] ? asm_exc_invalid_op+0x16/0x20 [ 4277.418482] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.419466] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.420410] free_to_partial_list+0x515/0x5e0 [ 4277.421242] ? xfs_iext_remove+0x41a/0xa10 [xfs] [ 4277.422298] xfs_iext_remove+0x41a/0xa10 [xfs] [ 4277.423316] ? xfs_inodegc_worker+0xb4/0x1a0 [xfs] [ 4277.424383] xfs_bmap_del_extent_delay+0x4fe/0x7d0 [xfs] [ 4277.425490] __xfs_bunmapi+0x50d/0x840 [xfs] [ 4277.426445] xfs_itruncate_extents_flags+0x13a/0x490 [xfs] [ 4277.427553] xfs_inactive_truncate+0xa3/0x120 [xfs] [ 4277.428567] xfs_inactive+0x22d/0x290 [xfs] [ 4277.429500] xfs_inodegc_worker+0xb4/0x1a0 [xfs] [ 4277.430479] process_one_work+0x171/0x340 [ 4277.431227] worker_thread+0x277/0x390 [ 4277.431962] ? __pfx_worker_thread+0x10/0x10 [ 4277.432752] kthread+0xf0/0x120 [ 4277.433382] ? __pfx_kthread+0x10/0x10 [ 4277.434134] ret_from_fork+0x2d/0x50 [ 4277.434837] ? __pfx_kthread+0x10/0x10 [ 4277.435566] ret_from_fork_asm+0x1b/0x30 [ 4277.436280] </TASK>
medium
CVE-2024-56563In the Linux kernel, the following vulnerability has been resolved: ceph: fix cred leak in ceph_mds_check_access() get_current_cred() increments the reference counter, but the put_cred() call was missing.
medium
CVE-2024-56559In the Linux kernel, the following vulnerability has been resolved: mm/vmalloc: combine all TLB flush operations of KASAN shadow virtual address into one operation When compiling kernel source 'make -j $(nproc)' with the up-and-running KASAN-enabled kernel on a 256-core machine, the following soft lockup is shown: watchdog: BUG: soft lockup - CPU#28 stuck for 22s! [kworker/28:1:1760] CPU: 28 PID: 1760 Comm: kworker/28:1 Kdump: loaded Not tainted 6.10.0-rc5 #95 Workqueue: events drain_vmap_area_work RIP: 0010:smp_call_function_many_cond+0x1d8/0xbb0 Code: 38 c8 7c 08 84 c9 0f 85 49 08 00 00 8b 45 08 a8 01 74 2e 48 89 f1 49 89 f7 48 c1 e9 03 41 83 e7 07 4c 01 e9 41 83 c7 03 f3 90 <0f> b6 01 41 38 c7 7c 08 84 c0 0f 85 d4 06 00 00 8b 45 08 a8 01 75 RSP: 0018:ffffc9000cb3fb60 EFLAGS: 00000202 RAX: 0000000000000011 RBX: ffff8883bc4469c0 RCX: ffffed10776e9949 RDX: 0000000000000002 RSI: ffff8883bb74ca48 RDI: ffffffff8434dc50 RBP: ffff8883bb74ca40 R08: ffff888103585dc0 R09: ffff8884533a1800 R10: 0000000000000004 R11: ffffffffffffffff R12: ffffed1077888d39 R13: dffffc0000000000 R14: ffffed1077888d38 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8883bc400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005577b5c8d158 CR3: 0000000004850000 CR4: 0000000000350ef0 Call Trace: <IRQ> ? watchdog_timer_fn+0x2cd/0x390 ? __pfx_watchdog_timer_fn+0x10/0x10 ? __hrtimer_run_queues+0x300/0x6d0 ? sched_clock_cpu+0x69/0x4e0 ? __pfx___hrtimer_run_queues+0x10/0x10 ? srso_return_thunk+0x5/0x5f ? ktime_get_update_offsets_now+0x7f/0x2a0 ? srso_return_thunk+0x5/0x5f ? srso_return_thunk+0x5/0x5f ? hrtimer_interrupt+0x2ca/0x760 ? __sysvec_apic_timer_interrupt+0x8c/0x2b0 ? sysvec_apic_timer_interrupt+0x6a/0x90 </IRQ> <TASK> ? asm_sysvec_apic_timer_interrupt+0x16/0x20 ? smp_call_function_many_cond+0x1d8/0xbb0 ? __pfx_do_kernel_range_flush+0x10/0x10 on_each_cpu_cond_mask+0x20/0x40 flush_tlb_kernel_range+0x19b/0x250 ? srso_return_thunk+0x5/0x5f ? kasan_release_vmalloc+0xa7/0xc0 purge_vmap_node+0x357/0x820 ? __pfx_purge_vmap_node+0x10/0x10 __purge_vmap_area_lazy+0x5b8/0xa10 drain_vmap_area_work+0x21/0x30 process_one_work+0x661/0x10b0 worker_thread+0x844/0x10e0 ? srso_return_thunk+0x5/0x5f ? __kthread_parkme+0x82/0x140 ? __pfx_worker_thread+0x10/0x10 kthread+0x2a5/0x370 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Debugging Analysis: 1. The following ftrace log shows that the lockup CPU spends too much time iterating vmap_nodes and flushing TLB when purging vm_area structures. (Some info is trimmed). kworker: funcgraph_entry: | drain_vmap_area_work() { kworker: funcgraph_entry: | mutex_lock() { kworker: funcgraph_entry: 1.092 us | __cond_resched(); kworker: funcgraph_exit: 3.306 us | } ... ... kworker: funcgraph_entry: | flush_tlb_kernel_range() { ... ... kworker: funcgraph_exit: # 7533.649 us | } ... ... kworker: funcgraph_entry: 2.344 us | mutex_unlock(); kworker: funcgraph_exit: $ 23871554 us | } The drain_vmap_area_work() spends over 23 seconds. There are 2805 flush_tlb_kernel_range() calls in the ftrace log. * One is called in __purge_vmap_area_lazy(). * Others are called by purge_vmap_node->kasan_release_vmalloc. purge_vmap_node() iteratively releases kasan vmalloc allocations and flushes TLB for each vmap_area. - [Rough calculation] Each flush_tlb_kernel_range() runs about 7.5ms. -- 2804 * 7.5ms = 21.03 seconds. -- That's why a soft lock is triggered. 2. Extending the soft lockup time can work around the issue (For example, # echo ---truncated---
medium
CVE-2024-56552In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc_submit: fix race around suspend_pending Currently in some testcases we can trigger: xe 0000:03:00.0: [drm] Assertion `exec_queue_destroyed(q)` failed! .... WARNING: CPU: 18 PID: 2640 at drivers/gpu/drm/xe/xe_guc_submit.c:1826 xe_guc_sched_done_handler+0xa54/0xef0 [xe] xe 0000:03:00.0: [drm] *ERROR* GT1: DEREGISTER_DONE: Unexpected engine state 0x00a1, guc_id=57 Looking at a snippet of corresponding ftrace for this GuC id we can see: 162.673311: xe_sched_msg_add: dev=0000:03:00.0, gt=1 guc_id=57, opcode=3 162.673317: xe_sched_msg_recv: dev=0000:03:00.0, gt=1 guc_id=57, opcode=3 162.673319: xe_exec_queue_scheduling_disable: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0x29, flags=0x0 162.674089: xe_exec_queue_kill: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0x29, flags=0x0 162.674108: xe_exec_queue_close: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa9, flags=0x0 162.674488: xe_exec_queue_scheduling_done: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa9, flags=0x0 162.678452: xe_exec_queue_deregister: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa1, flags=0x0 It looks like we try to suspend the queue (opcode=3), setting suspend_pending and triggering a disable_scheduling. The user then closes the queue. However the close will also forcefully signal the suspend fence after killing the queue, later when the G2H response for disable_scheduling comes back we have now cleared suspend_pending when signalling the suspend fence, so the disable_scheduling now incorrectly tries to also deregister the queue. This leads to warnings since the queue has yet to even be marked for destruction. We also seem to trigger errors later with trying to double unregister the same queue. To fix this tweak the ordering when handling the response to ensure we don't race with a disable_scheduling that didn't actually intend to perform an unregister. The destruction path should now also correctly wait for any pending_disable before marking as destroyed. (cherry picked from commit f161809b362f027b6d72bd998e47f8f0bad60a2e)
medium
CVE-2024-56546In the Linux kernel, the following vulnerability has been resolved: drivers: soc: xilinx: add the missing kfree in xlnx_add_cb_for_suspend() If we fail to allocate memory for cb_data by kmalloc, the memory allocation for eve_data is never freed, add the missing kfree() in the error handling path.
medium
CVE-2024-56372In the Linux kernel, the following vulnerability has been resolved: net: tun: fix tun_napi_alloc_frags() syzbot reported the following crash [1] Issue came with the blamed commit. Instead of going through all the iov components, we keep using the first one and end up with a malformed skb. [1] kernel BUG at net/core/skbuff.c:2849 ! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 UID: 0 PID: 6230 Comm: syz-executor132 Not tainted 6.13.0-rc1-syzkaller-00407-g96b6fcc0ee41 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024 RIP: 0010:__pskb_pull_tail+0x1568/0x1570 net/core/skbuff.c:2848 Code: 38 c1 0f 8c 32 f1 ff ff 4c 89 f7 e8 92 96 74 f8 e9 25 f1 ff ff e8 e8 ae 09 f8 48 8b 5c 24 08 e9 eb fb ff ff e8 d9 ae 09 f8 90 <0f> 0b 66 0f 1f 44 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 RSP: 0018:ffffc90004cbef30 EFLAGS: 00010293 RAX: ffffffff8995c347 RBX: 00000000fffffff2 RCX: ffff88802cf45a00 RDX: 0000000000000000 RSI: 00000000fffffff2 RDI: 0000000000000000 RBP: ffff88807df0c06a R08: ffffffff8995b084 R09: 1ffff1100fbe185c R10: dffffc0000000000 R11: ffffed100fbe185d R12: ffff888076e85d50 R13: ffff888076e85c80 R14: ffff888076e85cf4 R15: ffff888076e85c80 FS: 00007f0dca6ea6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0dca6ead58 CR3: 00000000119da000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> skb_cow_data+0x2da/0xcb0 net/core/skbuff.c:5284 tipc_aead_decrypt net/tipc/crypto.c:894 [inline] tipc_crypto_rcv+0x402/0x24e0 net/tipc/crypto.c:1844 tipc_rcv+0x57e/0x12a0 net/tipc/node.c:2109 tipc_l2_rcv_msg+0x2bd/0x450 net/tipc/bearer.c:668 __netif_receive_skb_list_ptype net/core/dev.c:5720 [inline] __netif_receive_skb_list_core+0x8b7/0x980 net/core/dev.c:5762 __netif_receive_skb_list net/core/dev.c:5814 [inline] netif_receive_skb_list_internal+0xa51/0xe30 net/core/dev.c:5905 gro_normal_list include/net/gro.h:515 [inline] napi_complete_done+0x2b5/0x870 net/core/dev.c:6256 napi_complete include/linux/netdevice.h:567 [inline] tun_get_user+0x2ea0/0x4890 drivers/net/tun.c:1982 tun_chr_write_iter+0x10d/0x1f0 drivers/net/tun.c:2057 do_iter_readv_writev+0x600/0x880 vfs_writev+0x376/0xba0 fs/read_write.c:1050 do_writev+0x1b6/0x360 fs/read_write.c:1096 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
medium
CVE-2024-56368In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Fix overflow in __rb_map_vma An overflow occurred when performing the following calculation: nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; Add a check before the calculation to avoid this problem. syzbot reported this as a slab-out-of-bounds in __rb_map_vma: BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058 Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836 CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xc3/0x620 mm/kasan/report.c:489 kasan_report+0xd9/0x110 mm/kasan/report.c:602 __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058 ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138 tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482 call_mmap include/linux/fs.h:2183 [inline] mmap_file mm/internal.h:124 [inline] __mmap_new_file_vma mm/vma.c:2291 [inline] __mmap_new_vma mm/vma.c:2355 [inline] __mmap_region+0x1786/0x2670 mm/vma.c:2456 mmap_region+0x127/0x320 mm/mmap.c:1348 do_mmap+0xc00/0xfc0 mm/mmap.c:496 vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580 ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542 __do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline] __se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline] __x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The reproducer for this bug is: ------------------------8<------------------------- #include <fcntl.h> #include <stdlib.h> #include <unistd.h> #include <asm/types.h> #include <sys/mman.h> int main(int argc, char **argv) { int page_size = getpagesize(); int fd; void *meta; system("echo 1 > /sys/kernel/tracing/buffer_size_kb"); fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY); meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5); } ------------------------>8-------------------------
medium
CVE-2024-53855Centurion ERP (Enterprise Rescource Planning) is a simple application developed to provide open source IT management with a large emphasis on the IT Service Management (ITSM) modules. A user who is authenticated and has view permissions for a ticket, can view the tickets of another organization they are not apart of. Users with following permissions are applicable: 1. `view_ticket_change` permission can view change tickets from organizations they are not apart of. 2. `view_ticket_incident` permission can view incident tickets from organizations they are not apart of. 3. `view_ticket_request` permission can view request tickets from organizations they are not apart of. 4. `view_ticket_problem` permission can view problem tickets from organizations they are not apart of. The access to view the tickets from different organizations is only applicable when browsing the API endpoints for the tickets in question. The Centurion UI is not affected. Project Tasks, although a "ticket type" are also **Not** affected. This issue has been addressed in release version 1.3.1 and users are advised to upgrade. Users unable to upgrade may remove the ticket view permissions from users which would alleviate this vulnerability, if this is deemed not-viable, Upgrading is recommended.
medium
CVE-2024-53699An out-of-bounds write vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to modify or corrupt memory. We have already fixed the vulnerability in the following versions: QTS 5.2.3.3006 build 20250108 and later QuTS hero h5.2.3.3006 build 20250108 and later
low
CVE-2024-53698A double free vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to modify memory. We have already fixed the vulnerability in the following versions: QTS 5.2.3.3006 build 20250108 and later QuTS hero h5.2.3.3006 build 20250108 and later
low
CVE-2024-53697An out-of-bounds write vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to modify or corrupt memory. We have already fixed the vulnerability in the following versions: QTS 5.2.3.3006 build 20250108 and later QuTS hero h5.2.3.3006 build 20250108 and later
low
CVE-2024-53691A link following vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained user access to traverse the file system to unintended locations. We have already fixed the vulnerability in the following versions: QTS 5.1.8.2823 build 20240712 and later QTS 5.2.0.2802 build 20240620 and later QuTS hero h5.1.8.2823 build 20240712 and later QuTS hero h5.2.0.2802 build 20240620 and later
high
CVE-2024-53680In the Linux kernel, the following vulnerability has been resolved: ipvs: fix UB due to uninitialized stack access in ip_vs_protocol_init() Under certain kernel configurations when building with Clang/LLVM, the compiler does not generate a return or jump as the terminator instruction for ip_vs_protocol_init(), triggering the following objtool warning during build time: vmlinux.o: warning: objtool: ip_vs_protocol_init() falls through to next function __initstub__kmod_ip_vs_rr__935_123_ip_vs_rr_init6() At runtime, this either causes an oops when trying to load the ipvs module or a boot-time panic if ipvs is built-in. This same issue has been reported by the Intel kernel test robot previously. Digging deeper into both LLVM and the kernel code reveals this to be a undefined behavior problem. ip_vs_protocol_init() uses a on-stack buffer of 64 chars to store the registered protocol names and leaves it uninitialized after definition. The function calls strnlen() when concatenating protocol names into the buffer. With CONFIG_FORTIFY_SOURCE strnlen() performs an extra step to check whether the last byte of the input char buffer is a null character (commit 3009f891bb9f ("fortify: Allow strlen() and strnlen() to pass compile-time known lengths")). This, together with possibly other configurations, cause the following IR to be generated: define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #5 section ".init.text" align 16 !kcfi_type !29 { %1 = alloca [64 x i8], align 16 ... 14: ; preds = %11 %15 = getelementptr inbounds i8, ptr %1, i64 63 %16 = load i8, ptr %15, align 1 %17 = tail call i1 @llvm.is.constant.i8(i8 %16) %18 = icmp eq i8 %16, 0 %19 = select i1 %17, i1 %18, i1 false br i1 %19, label %20, label %23 20: ; preds = %14 %21 = call i64 @strlen(ptr noundef nonnull dereferenceable(1) %1) #23 ... 23: ; preds = %14, %11, %20 %24 = call i64 @strnlen(ptr noundef nonnull dereferenceable(1) %1, i64 noundef 64) #24 ... } The above code calculates the address of the last char in the buffer (value %15) and then loads from it (value %16). Because the buffer is never initialized, the LLVM GVN pass marks value %16 as undefined: %13 = getelementptr inbounds i8, ptr %1, i64 63 br i1 undef, label %14, label %17 This gives later passes (SCCP, in particular) more DCE opportunities by propagating the undef value further, and eventually removes everything after the load on the uninitialized stack location: define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #0 section ".init.text" align 16 !kcfi_type !11 { %1 = alloca [64 x i8], align 16 ... 12: ; preds = %11 %13 = getelementptr inbounds i8, ptr %1, i64 63 unreachable } In this way, the generated native code will just fall through to the next function, as LLVM does not generate any code for the unreachable IR instruction and leaves the function without a terminator. Zero the on-stack buffer to avoid this possible UB.
medium