CVE-2025-38716 | In the Linux kernel, the following vulnerability has been resolved: hfs: fix general protection fault in hfs_find_init() The hfs_find_init() method can trigger the crash if tree pointer is NULL: [ 45.746290][ T9787] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000008: 0000 [#1] SMP KAI [ 45.747287][ T9787] KASAN: null-ptr-deref in range [0x0000000000000040-0x0000000000000047] [ 45.748716][ T9787] CPU: 2 UID: 0 PID: 9787 Comm: repro Not tainted 6.16.0-rc3 #10 PREEMPT(full) [ 45.750250][ T9787] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 45.751983][ T9787] RIP: 0010:hfs_find_init+0x86/0x230 [ 45.752834][ T9787] Code: c1 ea 03 80 3c 02 00 0f 85 9a 01 00 00 4c 8d 6b 40 48 c7 45 18 00 00 00 00 48 b8 00 00 00 00 00 fc [ 45.755574][ T9787] RSP: 0018:ffffc90015157668 EFLAGS: 00010202 [ 45.756432][ T9787] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff819a4d09 [ 45.757457][ T9787] RDX: 0000000000000008 RSI: ffffffff819acd3a RDI: ffffc900151576e8 [ 45.758282][ T9787] RBP: ffffc900151576d0 R08: 0000000000000005 R09: 0000000000000000 [ 45.758943][ T9787] R10: 0000000080000000 R11: 0000000000000001 R12: 0000000000000004 [ 45.759619][ T9787] R13: 0000000000000040 R14: ffff88802c50814a R15: 0000000000000000 [ 45.760293][ T9787] FS: 00007ffb72734540(0000) GS:ffff8880cec64000(0000) knlGS:0000000000000000 [ 45.761050][ T9787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 45.761606][ T9787] CR2: 00007f9bd8225000 CR3: 000000010979a000 CR4: 00000000000006f0 [ 45.762286][ T9787] Call Trace: [ 45.762570][ T9787] <TASK> [ 45.762824][ T9787] hfs_ext_read_extent+0x190/0x9d0 [ 45.763269][ T9787] ? submit_bio_noacct_nocheck+0x2dd/0xce0 [ 45.763766][ T9787] ? __pfx_hfs_ext_read_extent+0x10/0x10 [ 45.764250][ T9787] hfs_get_block+0x55f/0x830 [ 45.764646][ T9787] block_read_full_folio+0x36d/0x850 [ 45.765105][ T9787] ? __pfx_hfs_get_block+0x10/0x10 [ 45.765541][ T9787] ? const_folio_flags+0x5b/0x100 [ 45.765972][ T9787] ? __pfx_hfs_read_folio+0x10/0x10 [ 45.766415][ T9787] filemap_read_folio+0xbe/0x290 [ 45.766840][ T9787] ? __pfx_filemap_read_folio+0x10/0x10 [ 45.767325][ T9787] ? __filemap_get_folio+0x32b/0xbf0 [ 45.767780][ T9787] do_read_cache_folio+0x263/0x5c0 [ 45.768223][ T9787] ? __pfx_hfs_read_folio+0x10/0x10 [ 45.768666][ T9787] read_cache_page+0x5b/0x160 [ 45.769070][ T9787] hfs_btree_open+0x491/0x1740 [ 45.769481][ T9787] hfs_mdb_get+0x15e2/0x1fb0 [ 45.769877][ T9787] ? __pfx_hfs_mdb_get+0x10/0x10 [ 45.770316][ T9787] ? find_held_lock+0x2b/0x80 [ 45.770731][ T9787] ? lockdep_init_map_type+0x5c/0x280 [ 45.771200][ T9787] ? lockdep_init_map_type+0x5c/0x280 [ 45.771674][ T9787] hfs_fill_super+0x38e/0x720 [ 45.772092][ T9787] ? __pfx_hfs_fill_super+0x10/0x10 [ 45.772549][ T9787] ? snprintf+0xbe/0x100 [ 45.772931][ T9787] ? __pfx_snprintf+0x10/0x10 [ 45.773350][ T9787] ? do_raw_spin_lock+0x129/0x2b0 [ 45.773796][ T9787] ? find_held_lock+0x2b/0x80 [ 45.774215][ T9787] ? set_blocksize+0x40a/0x510 [ 45.774636][ T9787] ? sb_set_blocksize+0x176/0x1d0 [ 45.775087][ T9787] ? setup_bdev_super+0x369/0x730 [ 45.775533][ T9787] get_tree_bdev_flags+0x384/0x620 [ 45.775985][ T9787] ? __pfx_hfs_fill_super+0x10/0x10 [ 45.776453][ T9787] ? __pfx_get_tree_bdev_flags+0x10/0x10 [ 45.776950][ T9787] ? bpf_lsm_capable+0x9/0x10 [ 45.777365][ T9787] ? security_capable+0x80/0x260 [ 45.777803][ T9787] vfs_get_tree+0x8e/0x340 [ 45.778203][ T9787] path_mount+0x13de/0x2010 [ 45.778604][ T9787] ? kmem_cache_free+0x2b0/0x4c0 [ 45.779052][ T9787] ? __pfx_path_mount+0x10/0x10 [ 45.779480][ T9787] ? getname_flags.part.0+0x1c5/0x550 [ 45.779954][ T9787] ? putname+0x154/0x1a0 [ 45.780335][ T9787] __x64_sys_mount+0x27b/0x300 [ 45.780758][ T9787] ? __pfx___x64_sys_mount+0x10/0x10 [ 45.781232][ T9787] ---truncated--- | medium |
CVE-2025-38715 | In the Linux kernel, the following vulnerability has been resolved: hfs: fix slab-out-of-bounds in hfs_bnode_read() This patch introduces is_bnode_offset_valid() method that checks the requested offset value. Also, it introduces check_and_correct_requested_length() method that checks and correct the requested length (if it is necessary). These methods are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(), hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent the access out of allocated memory and triggering the crash. | medium |
CVE-2025-38714 | In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds in hfsplus_bnode_read() The hfsplus_bnode_read() method can trigger the issue: [ 174.852007][ T9784] ================================================================== [ 174.852709][ T9784] BUG: KASAN: slab-out-of-bounds in hfsplus_bnode_read+0x2f4/0x360 [ 174.853412][ T9784] Read of size 8 at addr ffff88810b5fc6c0 by task repro/9784 [ 174.854059][ T9784] [ 174.854272][ T9784] CPU: 1 UID: 0 PID: 9784 Comm: repro Not tainted 6.16.0-rc3 #7 PREEMPT(full) [ 174.854281][ T9784] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 174.854286][ T9784] Call Trace: [ 174.854289][ T9784] <TASK> [ 174.854292][ T9784] dump_stack_lvl+0x10e/0x1f0 [ 174.854305][ T9784] print_report+0xd0/0x660 [ 174.854315][ T9784] ? __virt_addr_valid+0x81/0x610 [ 174.854323][ T9784] ? __phys_addr+0xe8/0x180 [ 174.854330][ T9784] ? hfsplus_bnode_read+0x2f4/0x360 [ 174.854337][ T9784] kasan_report+0xc6/0x100 [ 174.854346][ T9784] ? hfsplus_bnode_read+0x2f4/0x360 [ 174.854354][ T9784] hfsplus_bnode_read+0x2f4/0x360 [ 174.854362][ T9784] hfsplus_bnode_dump+0x2ec/0x380 [ 174.854370][ T9784] ? __pfx_hfsplus_bnode_dump+0x10/0x10 [ 174.854377][ T9784] ? hfsplus_bnode_write_u16+0x83/0xb0 [ 174.854385][ T9784] ? srcu_gp_start+0xd0/0x310 [ 174.854393][ T9784] ? __mark_inode_dirty+0x29e/0xe40 [ 174.854402][ T9784] hfsplus_brec_remove+0x3d2/0x4e0 [ 174.854411][ T9784] __hfsplus_delete_attr+0x290/0x3a0 [ 174.854419][ T9784] ? __pfx_hfs_find_1st_rec_by_cnid+0x10/0x10 [ 174.854427][ T9784] ? __pfx___hfsplus_delete_attr+0x10/0x10 [ 174.854436][ T9784] ? __asan_memset+0x23/0x50 [ 174.854450][ T9784] hfsplus_delete_all_attrs+0x262/0x320 [ 174.854459][ T9784] ? __pfx_hfsplus_delete_all_attrs+0x10/0x10 [ 174.854469][ T9784] ? rcu_is_watching+0x12/0xc0 [ 174.854476][ T9784] ? __mark_inode_dirty+0x29e/0xe40 [ 174.854483][ T9784] hfsplus_delete_cat+0x845/0xde0 [ 174.854493][ T9784] ? __pfx_hfsplus_delete_cat+0x10/0x10 [ 174.854507][ T9784] hfsplus_unlink+0x1ca/0x7c0 [ 174.854516][ T9784] ? __pfx_hfsplus_unlink+0x10/0x10 [ 174.854525][ T9784] ? down_write+0x148/0x200 [ 174.854532][ T9784] ? __pfx_down_write+0x10/0x10 [ 174.854540][ T9784] vfs_unlink+0x2fe/0x9b0 [ 174.854549][ T9784] do_unlinkat+0x490/0x670 [ 174.854557][ T9784] ? __pfx_do_unlinkat+0x10/0x10 [ 174.854565][ T9784] ? __might_fault+0xbc/0x130 [ 174.854576][ T9784] ? getname_flags.part.0+0x1c5/0x550 [ 174.854584][ T9784] __x64_sys_unlink+0xc5/0x110 [ 174.854592][ T9784] do_syscall_64+0xc9/0x480 [ 174.854600][ T9784] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 174.854608][ T9784] RIP: 0033:0x7f6fdf4c3167 [ 174.854614][ T9784] Code: f0 ff ff 73 01 c3 48 8b 0d 26 0d 0e 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 08 [ 174.854622][ T9784] RSP: 002b:00007ffcb948bca8 EFLAGS: 00000206 ORIG_RAX: 0000000000000057 [ 174.854630][ T9784] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f6fdf4c3167 [ 174.854636][ T9784] RDX: 00007ffcb948bcc0 RSI: 00007ffcb948bcc0 RDI: 00007ffcb948bd50 [ 174.854641][ T9784] RBP: 00007ffcb948cd90 R08: 0000000000000001 R09: 00007ffcb948bb40 [ 174.854645][ T9784] R10: 00007f6fdf564fc0 R11: 0000000000000206 R12: 0000561e1bc9c2d0 [ 174.854650][ T9784] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 174.854658][ T9784] </TASK> [ 174.854661][ T9784] [ 174.879281][ T9784] Allocated by task 9784: [ 174.879664][ T9784] kasan_save_stack+0x20/0x40 [ 174.880082][ T9784] kasan_save_track+0x14/0x30 [ 174.880500][ T9784] __kasan_kmalloc+0xaa/0xb0 [ 174.880908][ T9784] __kmalloc_noprof+0x205/0x550 [ 174.881337][ T9784] __hfs_bnode_create+0x107/0x890 [ 174.881779][ T9784] hfsplus_bnode_find+0x2d0/0xd10 [ 174.882222][ T9784] hfsplus_brec_find+0x2b0/0x520 [ 174.882659][ T9784] hfsplus_delete_all_attrs+0x23b/0x3 ---truncated--- | critical |
CVE-2025-38713 | In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc() The hfsplus_readdir() method is capable to crash by calling hfsplus_uni2asc(): [ 667.121659][ T9805] ================================================================== [ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10 [ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805 [ 667.124578][ T9805] [ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full) [ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 667.124890][ T9805] Call Trace: [ 667.124893][ T9805] <TASK> [ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0 [ 667.124911][ T9805] print_report+0xd0/0x660 [ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610 [ 667.124928][ T9805] ? __phys_addr+0xe8/0x180 [ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124942][ T9805] kasan_report+0xc6/0x100 [ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10 [ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360 [ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0 [ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10 [ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0 [ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0 [ 667.125022][ T9805] ? lock_acquire+0x30/0x80 [ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0 [ 667.125044][ T9805] ? putname+0x154/0x1a0 [ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10 [ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0 [ 667.125069][ T9805] iterate_dir+0x296/0xb20 [ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10 [ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200 [ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10 [ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0 [ 667.125143][ T9805] do_syscall_64+0xc9/0x480 [ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9 [ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48 [ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9 [ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9 [ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004 [ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110 [ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260 [ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 667.125207][ T9805] </TASK> [ 667.125210][ T9805] [ 667.145632][ T9805] Allocated by task 9805: [ 667.145991][ T9805] kasan_save_stack+0x20/0x40 [ 667.146352][ T9805] kasan_save_track+0x14/0x30 [ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0 [ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550 [ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0 [ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0 [ 667.148174][ T9805] iterate_dir+0x296/0xb20 [ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.148937][ T9805] do_syscall_64+0xc9/0x480 [ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.149809][ T9805] [ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000 [ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048 [ 667.151282][ T9805] The buggy address is located 0 bytes to the right of [ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c) [ 667.1 ---truncated--- | medium |
CVE-2025-38712 | In the Linux kernel, the following vulnerability has been resolved: hfsplus: don't use BUG_ON() in hfsplus_create_attributes_file() When the volume header contains erroneous values that do not reflect the actual state of the filesystem, hfsplus_fill_super() assumes that the attributes file is not yet created, which later results in hitting BUG_ON() when hfsplus_create_attributes_file() is called. Replace this BUG_ON() with -EIO error with a message to suggest running fsck tool. | medium |
CVE-2025-38711 | In the Linux kernel, the following vulnerability has been resolved: smb/server: avoid deadlock when linking with ReplaceIfExists If smb2_create_link() is called with ReplaceIfExists set and the name does exist then a deadlock will happen. ksmbd_vfs_kern_path_locked() will return with success and the parent directory will be locked. ksmbd_vfs_remove_file() will then remove the file. ksmbd_vfs_link() will then be called while the parent is still locked. It will try to lock the same parent and will deadlock. This patch moves the ksmbd_vfs_kern_path_unlock() call to *before* ksmbd_vfs_link() and then simplifies the code, removing the file_present flag variable. | medium |
CVE-2025-38710 | In the Linux kernel, the following vulnerability has been resolved: gfs2: Validate i_depth for exhash directories A fuzzer test introduced corruption that ends up with a depth of 0 in dir_e_read(), causing an undefined shift by 32 at: index = hash >> (32 - dip->i_depth); As calculated in an open-coded way in dir_make_exhash(), the minimum depth for an exhash directory is ilog2(sdp->sd_hash_ptrs) and 0 is invalid as sdp->sd_hash_ptrs is fixed as sdp->bsize / 16 at mount time. So we can avoid the undefined behaviour by checking for depth values lower than the minimum in gfs2_dinode_in(). Values greater than the maximum are already being checked for there. Also switch the calculation in dir_make_exhash() to use ilog2() to clarify how the depth is calculated. Tested with the syzkaller repro.c and xfstests '-g quick'. | high |
CVE-2025-38709 | In the Linux kernel, the following vulnerability has been resolved: loop: Avoid updating block size under exclusive owner Syzbot came up with a reproducer where a loop device block size is changed underneath a mounted filesystem. This causes a mismatch between the block device block size and the block size stored in the superblock causing confusion in various places such as fs/buffer.c. The particular issue triggered by syzbot was a warning in __getblk_slow() due to requested buffer size not matching block device block size. Fix the problem by getting exclusive hold of the loop device to change its block size. This fails if somebody (such as filesystem) has already an exclusive ownership of the block device and thus prevents modifying the loop device under some exclusive owner which doesn't expect it. | high |
CVE-2025-38708 | In the Linux kernel, the following vulnerability has been resolved: drbd: add missing kref_get in handle_write_conflicts With `two-primaries` enabled, DRBD tries to detect "concurrent" writes and handle write conflicts, so that even if you write to the same sector simultaneously on both nodes, they end up with the identical data once the writes are completed. In handling "superseeded" writes, we forgot a kref_get, resulting in a premature drbd_destroy_device and use after free, and further to kernel crashes with symptoms. Relevance: No one should use DRBD as a random data generator, and apparently all users of "two-primaries" handle concurrent writes correctly on layer up. That is cluster file systems use some distributed lock manager, and live migration in virtualization environments stops writes on one node before starting writes on the other node. Which means that other than for "test cases", this code path is never taken in real life. FYI, in DRBD 9, things are handled differently nowadays. We still detect "write conflicts", but no longer try to be smart about them. We decided to disconnect hard instead: upper layers must not submit concurrent writes. If they do, that's their fault. | medium |
CVE-2025-38707 | In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Add sanity check for file name The length of the file name should be smaller than the directory entry size. | medium |
CVE-2025-38706 | In the Linux kernel, the following vulnerability has been resolved: ASoC: core: Check for rtd == NULL in snd_soc_remove_pcm_runtime() snd_soc_remove_pcm_runtime() might be called with rtd == NULL which will leads to null pointer dereference. This was reproduced with topology loading and marking a link as ignore due to missing hardware component on the system. On module removal the soc_tplg_remove_link() would call snd_soc_remove_pcm_runtime() with rtd == NULL since the link was ignored, no runtime was created. | medium |
CVE-2025-38705 | In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: fix null pointer access Writing a string without delimiters (' ', '\n', '\0') to the under gpu_od/fan_ctrl sysfs or pp_power_profile_mode for the CUSTOM profile will result in a null pointer dereference. | medium |
CVE-2025-38704 | In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access In the preparation stage of CPU online, if the corresponding the rdp's->nocb_cb_kthread does not exist, will be created, there is a situation where the rdp's rcuop kthreads creation fails, and then de-offload this CPU's rdp, does not assign this CPU's rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and rdp's->rdp_gp->nocb_gp_kthread is still valid. This will cause the subsequent re-offload operation of this offline CPU, which will pass the conditional check and the kthread_unpark() will access invalid rdp's->nocb_cb_kthread pointer. This commit therefore use rdp's->nocb_gp_kthread instead of rdp_gp's->nocb_gp_kthread for safety check. | medium |
CVE-2025-38703 | In the Linux kernel, the following vulnerability has been resolved: drm/xe: Make dma-fences compliant with the safe access rules Xe can free some of the data pointed to by the dma-fences it exports. Most notably the timeline name can get freed if userspace closes the associated submit queue. At the same time the fence could have been exported to a third party (for example a sync_fence fd) which will then cause an use- after-free on subsequent access. To make this safe we need to make the driver compliant with the newly documented dma-fence rules. Driver has to ensure a RCU grace period between signalling a fence and freeing any data pointed to by said fence. For the timeline name we simply make the queue be freed via kfree_rcu and for the shared lock associated with multiple queues we add a RCU grace period before freeing the per GT structure holding the lock. | high |
CVE-2025-38702 | In the Linux kernel, the following vulnerability has been resolved: fbdev: fix potential buffer overflow in do_register_framebuffer() The current implementation may lead to buffer overflow when: 1. Unregistration creates NULL gaps in registered_fb[] 2. All array slots become occupied despite num_registered_fb < FB_MAX 3. The registration loop exceeds array bounds Add boundary check to prevent registered_fb[FB_MAX] access. | high |
CVE-2025-38701 | In the Linux kernel, the following vulnerability has been resolved: ext4: do not BUG when INLINE_DATA_FL lacks system.data xattr A syzbot fuzzed image triggered a BUG_ON in ext4_update_inline_data() when an inode had the INLINE_DATA_FL flag set but was missing the system.data extended attribute. Since this can happen due to a maiciouly fuzzed file system, we shouldn't BUG, but rather, report it as a corrupted file system. Add similar replacements of BUG_ON with EXT4_ERROR_INODE() ii ext4_create_inline_data() and ext4_inline_data_truncate(). | high |
CVE-2025-38700 | In the Linux kernel, the following vulnerability has been resolved: scsi: libiscsi: Initialize iscsi_conn->dd_data only if memory is allocated In case of an ib_fast_reg_mr allocation failure during iSER setup, the machine hits a panic because iscsi_conn->dd_data is initialized unconditionally, even when no memory is allocated (dd_size == 0). This leads invalid pointer dereference during connection teardown. Fix by setting iscsi_conn->dd_data only if memory is actually allocated. Panic trace: ------------ iser: iser_create_fastreg_desc: Failed to allocate ib_fast_reg_mr err=-12 iser: iser_alloc_rx_descriptors: failed allocating rx descriptors / data buffers BUG: unable to handle page fault for address: fffffffffffffff8 RIP: 0010:swake_up_locked.part.5+0xa/0x40 Call Trace: complete+0x31/0x40 iscsi_iser_conn_stop+0x88/0xb0 [ib_iser] iscsi_stop_conn+0x66/0xc0 [scsi_transport_iscsi] iscsi_if_stop_conn+0x14a/0x150 [scsi_transport_iscsi] iscsi_if_rx+0x1135/0x1834 [scsi_transport_iscsi] ? netlink_lookup+0x12f/0x1b0 ? netlink_deliver_tap+0x2c/0x200 netlink_unicast+0x1ab/0x280 netlink_sendmsg+0x257/0x4f0 ? _copy_from_user+0x29/0x60 sock_sendmsg+0x5f/0x70 | medium |
CVE-2025-38699 | In the Linux kernel, the following vulnerability has been resolved: scsi: bfa: Double-free fix When the bfad_im_probe() function fails during initialization, the memory pointed to by bfad->im is freed without setting bfad->im to NULL. Subsequently, during driver uninstallation, when the state machine enters the bfad_sm_stopping state and calls the bfad_im_probe_undo() function, it attempts to free the memory pointed to by bfad->im again, thereby triggering a double-free vulnerability. Set bfad->im to NULL if probing fails. | high |
CVE-2025-38698 | In the Linux kernel, the following vulnerability has been resolved: jfs: Regular file corruption check The reproducer builds a corrupted file on disk with a negative i_size value. Add a check when opening this file to avoid subsequent operation failures. | high |
CVE-2025-38697 | In the Linux kernel, the following vulnerability has been resolved: jfs: upper bound check of tree index in dbAllocAG When computing the tree index in dbAllocAG, we never check if we are out of bounds realative to the size of the stree. This could happen in a scenario where the filesystem metadata are corrupted. | high |
CVE-2025-38696 | In the Linux kernel, the following vulnerability has been resolved: MIPS: Don't crash in stack_top() for tasks without ABI or vDSO Not all tasks have an ABI associated or vDSO mapped, for example kthreads never do. If such a task ever ends up calling stack_top(), it will derefence the NULL ABI pointer and crash. This can for example happen when using kunit: mips_stack_top+0x28/0xc0 arch_pick_mmap_layout+0x190/0x220 kunit_vm_mmap_init+0xf8/0x138 __kunit_add_resource+0x40/0xa8 kunit_vm_mmap+0x88/0xd8 usercopy_test_init+0xb8/0x240 kunit_try_run_case+0x5c/0x1a8 kunit_generic_run_threadfn_adapter+0x28/0x50 kthread+0x118/0x240 ret_from_kernel_thread+0x14/0x1c Only dereference the ABI point if it is set. The GIC page is also included as it is specific to the vDSO. Also move the randomization adjustment into the same conditional. | medium |
CVE-2025-38695 | In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Check for hdwq null ptr when cleaning up lpfc_vport structure If a call to lpfc_sli4_read_rev() from lpfc_sli4_hba_setup() fails, the resultant cleanup routine lpfc_sli4_vport_delete_fcp_xri_aborted() may occur before sli4_hba.hdwqs are allocated. This may result in a null pointer dereference when attempting to take the abts_io_buf_list_lock for the first hardware queue. Fix by adding a null ptr check on phba->sli4_hba.hdwq and early return because this situation means there must have been an error during port initialization. | high |
CVE-2025-38694 | In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: dib7090p: fix null-ptr-deref in dib7090p_rw_on_apb() In dib7090p_rw_on_apb, msg is controlled by user. When msg[0].buf is null and msg[0].len is zero, former checks on msg[0].buf would be passed. If accessing msg[0].buf[2] without sanity check, null pointer deref would happen. We add check on msg[0].len to prevent crash. Similar issue occurs when access msg[1].buf[0] and msg[1].buf[1]. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") | medium |
CVE-2025-38693 | In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: w7090p: fix null-ptr-deref in w7090p_tuner_write_serpar and w7090p_tuner_read_serpar In w7090p_tuner_write_serpar, msg is controlled by user. When msg[0].buf is null and msg[0].len is zero, former checks on msg[0].buf would be passed. If accessing msg[0].buf[2] without sanity check, null pointer deref would happen. We add check on msg[0].len to prevent crash. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") | medium |
CVE-2025-38692 | In the Linux kernel, the following vulnerability has been resolved: exfat: add cluster chain loop check for dir An infinite loop may occur if the following conditions occur due to file system corruption. (1) Condition for exfat_count_dir_entries() to loop infinitely. - The cluster chain includes a loop. - There is no UNUSED entry in the cluster chain. (2) Condition for exfat_create_upcase_table() to loop infinitely. - The cluster chain of the root directory includes a loop. - There are no UNUSED entry and up-case table entry in the cluster chain of the root directory. (3) Condition for exfat_load_bitmap() to loop infinitely. - The cluster chain of the root directory includes a loop. - There are no UNUSED entry and bitmap entry in the cluster chain of the root directory. (4) Condition for exfat_find_dir_entry() to loop infinitely. - The cluster chain includes a loop. - The unused directory entries were exhausted by some operation. (5) Condition for exfat_check_dir_empty() to loop infinitely. - The cluster chain includes a loop. - The unused directory entries were exhausted by some operation. - All files and sub-directories under the directory are deleted. This commit adds checks to break the above infinite loop. | high |
CVE-2025-38691 | In the Linux kernel, the following vulnerability has been resolved: pNFS: Fix uninited ptr deref in block/scsi layout The error occurs on the third attempt to encode extents. When function ext_tree_prepare_commit() reallocates a larger buffer to retry encoding extents, the "layoutupdate_pages" page array is initialized only after the retry loop. But ext_tree_free_commitdata() is called on every iteration and tries to put pages in the array, thus dereferencing uninitialized pointers. An additional problem is that there is no limit on the maximum possible buffer_size. When there are too many extents, the client may create a layoutcommit that is larger than the maximum possible RPC size accepted by the server. During testing, we observed two typical scenarios. First, one memory page for extents is enough when we work with small files, append data to the end of the file, or preallocate extents before writing. But when we fill a new large file without preallocating, the number of extents can be huge, and counting the number of written extents in ext_tree_encode_commit() does not help much. Since this number increases even more between unlocking and locking of ext_tree, the reallocated buffer may not be large enough again and again. | medium |
CVE-2025-38690 | In the Linux kernel, the following vulnerability has been resolved: drm/xe/migrate: prevent infinite recursion If the buf + offset is not aligned to XE_CAHELINE_BYTES we fallback to using a bounce buffer. However the bounce buffer here is allocated on the stack, and the only alignment requirement here is that it's naturally aligned to u8, and not XE_CACHELINE_BYTES. If the bounce buffer is also misaligned we then recurse back into the function again, however the new bounce buffer might also not be aligned, and might never be until we eventually blow through the stack, as we keep recursing. Instead of using the stack use kmalloc, which should respect the power-of-two alignment request here. Fixes a kernel panic when triggering this path through eudebug. v2 (Stuart): - Add build bug check for power-of-two restriction - s/EINVAL/ENOMEM/ (cherry picked from commit 38b34e928a08ba594c4bbf7118aa3aadacd62fff) | medium |
CVE-2025-38689 | In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Fix NULL dereference in avx512_status() Problem ------- With CONFIG_X86_DEBUG_FPU enabled, reading /proc/[kthread]/arch_status causes a warning and a NULL pointer dereference. This is because the AVX-512 timestamp code uses x86_task_fpu() but doesn't check it for NULL. CONFIG_X86_DEBUG_FPU addles that function for kernel threads (PF_KTHREAD specifically), making it return NULL. The point of the warning was to ensure that kernel threads only access task->fpu after going through kernel_fpu_begin()/_end(). Note: all kernel tasks exposed in /proc have a valid task->fpu. Solution -------- One option is to silence the warning and check for NULL from x86_task_fpu(). However, that warning is fairly fresh and seems like a defense against misuse of the FPU state in kernel threads. Instead, stop outputting AVX-512_elapsed_ms for kernel threads altogether. The data was garbage anyway because avx512_timestamp is only updated for user threads, not kernel threads. If anyone ever wants to track kernel thread AVX-512 use, they can come back later and do it properly, separate from this bug fix. [ dhansen: mostly rewrite changelog ] | medium |
CVE-2025-38688 | In the Linux kernel, the following vulnerability has been resolved: iommufd: Prevent ALIGN() overflow When allocating IOVA the candidate range gets aligned to the target alignment. If the range is close to ULONG_MAX then the ALIGN() can wrap resulting in a corrupted iova. Open code the ALIGN() using get_add_overflow() to prevent this. This simplifies the checks as we don't need to check for length earlier either. Consolidate the two copies of this code under a single helper. This bug would allow userspace to create a mapping that overlaps with some other mapping or a reserved range. | high |
CVE-2025-38687 | In the Linux kernel, the following vulnerability has been resolved: comedi: fix race between polling and detaching syzbot reports a use-after-free in comedi in the below link, which is due to comedi gladly removing the allocated async area even though poll requests are still active on the wait_queue_head inside of it. This can cause a use-after-free when the poll entries are later triggered or removed, as the memory for the wait_queue_head has been freed. We need to check there are no tasks queued on any of the subdevices' wait queues before allowing the device to be detached by the `COMEDI_DEVCONFIG` ioctl. Tasks will read-lock `dev->attach_lock` before adding themselves to the subdevice wait queue, so fix the problem in the `COMEDI_DEVCONFIG` ioctl handler by write-locking `dev->attach_lock` before checking that all of the subdevices are safe to be deleted. This includes testing for any sleepers on the subdevices' wait queues. It remains locked until the device has been detached. This requires the `comedi_device_detach()` function to be refactored slightly, moving the bulk of it into new function `comedi_device_detach_locked()`. Note that the refactor of `comedi_device_detach()` results in `comedi_device_cancel_all()` now being called while `dev->attach_lock` is write-locked, which wasn't the case previously, but that does not matter. Thanks to Jens Axboe for diagnosing the problem and co-developing this patch. | medium |
CVE-2025-38686 | In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix a crash in UFFDIO_MOVE when PMD is a migration entry When UFFDIO_MOVE encounters a migration PMD entry, it proceeds with obtaining a folio and accessing it even though the entry is swp_entry_t. Add the missing check and let split_huge_pmd() handle migration entries. While at it also remove unnecessary folio check. [[email protected]: remove extra folio check, per David] | medium |
CVE-2025-38685 | In the Linux kernel, the following vulnerability has been resolved: fbdev: Fix vmalloc out-of-bounds write in fast_imageblit This issue triggers when a userspace program does an ioctl FBIOPUT_CON2FBMAP by passing console number and frame buffer number. Ideally this maps console to frame buffer and updates the screen if console is visible. As part of mapping it has to do resize of console according to frame buffer info. if this resize fails and returns from vc_do_resize() and continues further. At this point console and new frame buffer are mapped and sets display vars. Despite failure still it continue to proceed updating the screen at later stages where vc_data is related to previous frame buffer and frame buffer info and display vars are mapped to new frame buffer and eventully leading to out-of-bounds write in fast_imageblit(). This bheviour is excepted only when fg_console is equal to requested console which is a visible console and updates screen with invalid struct references in fbcon_putcs(). | high |
CVE-2025-38684 | In the Linux kernel, the following vulnerability has been resolved: net/sched: ets: use old 'nbands' while purging unused classes Shuang reported sch_ets test-case [1] crashing in ets_class_qlen_notify() after recent changes from Lion [2]. The problem is: in ets_qdisc_change() we purge unused DWRR queues; the value of 'q->nbands' is the new one, and the cleanup should be done with the old one. The problem is here since my first attempts to fix ets_qdisc_change(), but it surfaced again after the recent qdisc len accounting fixes. Fix it purging idle DWRR queues before assigning a new value of 'q->nbands', so that all purge operations find a consistent configuration: - old 'q->nbands' because it's needed by ets_class_find() - old 'q->nstrict' because it's needed by ets_class_is_strict() BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 62 UID: 0 PID: 39457 Comm: tc Kdump: loaded Not tainted 6.12.0-116.el10.x86_64 #1 PREEMPT(voluntary) Hardware name: Dell Inc. PowerEdge R640/06DKY5, BIOS 2.12.2 07/09/2021 RIP: 0010:__list_del_entry_valid_or_report+0x4/0x80 Code: ff 4c 39 c7 0f 84 39 19 8e ff b8 01 00 00 00 c3 cc cc cc cc 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa <48> 8b 17 48 8b 4f 08 48 85 d2 0f 84 56 19 8e ff 48 85 c9 0f 84 ab RSP: 0018:ffffba186009f400 EFLAGS: 00010202 RAX: 00000000000000d6 RBX: 0000000000000000 RCX: 0000000000000004 RDX: ffff9f0fa29b69c0 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffffffc12c2400 R08: 0000000000000008 R09: 0000000000000004 R10: ffffffffffffffff R11: 0000000000000004 R12: 0000000000000000 R13: ffff9f0f8cfe0000 R14: 0000000000100005 R15: 0000000000000000 FS: 00007f2154f37480(0000) GS:ffff9f269c1c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000001530be001 CR4: 00000000007726f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ets_class_qlen_notify+0x65/0x90 [sch_ets] qdisc_tree_reduce_backlog+0x74/0x110 ets_qdisc_change+0x630/0xa40 [sch_ets] __tc_modify_qdisc.constprop.0+0x216/0x7f0 tc_modify_qdisc+0x7c/0x120 rtnetlink_rcv_msg+0x145/0x3f0 netlink_rcv_skb+0x53/0x100 netlink_unicast+0x245/0x390 netlink_sendmsg+0x21b/0x470 ____sys_sendmsg+0x39d/0x3d0 ___sys_sendmsg+0x9a/0xe0 __sys_sendmsg+0x7a/0xd0 do_syscall_64+0x7d/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f2155114084 Code: 89 02 b8 ff ff ff ff eb bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 80 3d 25 f0 0c 00 00 74 13 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 89 54 24 1c 48 89 RSP: 002b:00007fff1fd7a988 EFLAGS: 00000202 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000560ec063e5e0 RCX: 00007f2155114084 RDX: 0000000000000000 RSI: 00007fff1fd7a9f0 RDI: 0000000000000003 RBP: 00007fff1fd7aa60 R08: 0000000000000010 R09: 000000000000003f R10: 0000560ee9b3a010 R11: 0000000000000202 R12: 00007fff1fd7aae0 R13: 000000006891ccde R14: 0000560ec063e5e0 R15: 00007fff1fd7aad0 </TASK> [1] https://lore.kernel.org/netdev/e08c7f4a6882f260011909a868311c6e9b54f3e4.1639153474.git.dcaratti@redhat.com/ [2] https://lore.kernel.org/netdev/[email protected]/ | high |
CVE-2025-38683 | In the Linux kernel, the following vulnerability has been resolved: hv_netvsc: Fix panic during namespace deletion with VF The existing code move the VF NIC to new namespace when NETDEV_REGISTER is received on netvsc NIC. During deletion of the namespace, default_device_exit_batch() >> default_device_exit_net() is called. When netvsc NIC is moved back and registered to the default namespace, it automatically brings VF NIC back to the default namespace. This will cause the default_device_exit_net() >> for_each_netdev_safe loop unable to detect the list end, and hit NULL ptr: [ 231.449420] mana 7870:00:00.0 enP30832s1: Moved VF to namespace with: eth0 [ 231.449656] BUG: kernel NULL pointer dereference, address: 0000000000000010 [ 231.450246] #PF: supervisor read access in kernel mode [ 231.450579] #PF: error_code(0x0000) - not-present page [ 231.450916] PGD 17b8a8067 P4D 0 [ 231.451163] Oops: Oops: 0000 [#1] SMP NOPTI [ 231.451450] CPU: 82 UID: 0 PID: 1394 Comm: kworker/u768:1 Not tainted 6.16.0-rc4+ #3 VOLUNTARY [ 231.452042] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 11/21/2024 [ 231.452692] Workqueue: netns cleanup_net [ 231.452947] RIP: 0010:default_device_exit_batch+0x16c/0x3f0 [ 231.453326] Code: c0 0c f5 b3 e8 d5 db fe ff 48 85 c0 74 15 48 c7 c2 f8 fd ca b2 be 10 00 00 00 48 8d 7d c0 e8 7b 77 25 00 49 8b 86 28 01 00 00 <48> 8b 50 10 4c 8b 2a 4c 8d 62 f0 49 83 ed 10 4c 39 e0 0f 84 d6 00 [ 231.454294] RSP: 0018:ff75fc7c9bf9fd00 EFLAGS: 00010246 [ 231.454610] RAX: 0000000000000000 RBX: 0000000000000002 RCX: 61c8864680b583eb [ 231.455094] RDX: ff1fa9f71462d800 RSI: ff75fc7c9bf9fd38 RDI: 0000000030766564 [ 231.455686] RBP: ff75fc7c9bf9fd78 R08: 0000000000000000 R09: 0000000000000000 [ 231.456126] R10: 0000000000000001 R11: 0000000000000004 R12: ff1fa9f70088e340 [ 231.456621] R13: ff1fa9f70088e340 R14: ffffffffb3f50c20 R15: ff1fa9f7103e6340 [ 231.457161] FS: 0000000000000000(0000) GS:ff1faa6783a08000(0000) knlGS:0000000000000000 [ 231.457707] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 231.458031] CR2: 0000000000000010 CR3: 0000000179ab2006 CR4: 0000000000b73ef0 [ 231.458434] Call Trace: [ 231.458600] <TASK> [ 231.458777] ops_undo_list+0x100/0x220 [ 231.459015] cleanup_net+0x1b8/0x300 [ 231.459285] process_one_work+0x184/0x340 To fix it, move the ns change to a workqueue, and take rtnl_lock to avoid changing the netdev list when default_device_exit_net() is using it. | medium |
CVE-2025-38682 | In the Linux kernel, the following vulnerability has been resolved: i2c: core: Fix double-free of fwnode in i2c_unregister_device() Before commit df6d7277e552 ("i2c: core: Do not dereference fwnode in struct device"), i2c_unregister_device() only called fwnode_handle_put() on of_node-s in the form of calling of_node_put(client->dev.of_node). But after this commit the i2c_client's fwnode now unconditionally gets fwnode_handle_put() on it. When the i2c_client has no primary (ACPI / OF) fwnode but it does have a software fwnode, the software-node will be the primary node and fwnode_handle_put() will put() it. But for the software fwnode device_remove_software_node() will also put() it leading to a double free: [ 82.665598] ------------[ cut here ]------------ [ 82.665609] refcount_t: underflow; use-after-free. [ 82.665808] WARNING: CPU: 3 PID: 1502 at lib/refcount.c:28 refcount_warn_saturate+0xba/0x11 ... [ 82.666830] RIP: 0010:refcount_warn_saturate+0xba/0x110 ... [ 82.666962] <TASK> [ 82.666971] i2c_unregister_device+0x60/0x90 Fix this by not calling fwnode_handle_put() when the primary fwnode is a software-node. | high |
CVE-2025-38681 | In the Linux kernel, the following vulnerability has been resolved: mm/ptdump: take the memory hotplug lock inside ptdump_walk_pgd() Memory hot remove unmaps and tears down various kernel page table regions as required. The ptdump code can race with concurrent modifications of the kernel page tables. When leaf entries are modified concurrently, the dump code may log stale or inconsistent information for a VA range, but this is otherwise not harmful. But when intermediate levels of kernel page table are freed, the dump code will continue to use memory that has been freed and potentially reallocated for another purpose. In such cases, the ptdump code may dereference bogus addresses, leading to a number of potential problems. To avoid the above mentioned race condition, platforms such as arm64, riscv and s390 take memory hotplug lock, while dumping kernel page table via the sysfs interface /sys/kernel/debug/kernel_page_tables. Similar race condition exists while checking for pages that might have been marked W+X via /sys/kernel/debug/kernel_page_tables/check_wx_pages which in turn calls ptdump_check_wx(). Instead of solving this race condition again, let's just move the memory hotplug lock inside generic ptdump_check_wx() which will benefit both the scenarios. Drop get_online_mems() and put_online_mems() combination from all existing platform ptdump code paths. | medium |
CVE-2025-38680 | In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Fix 1-byte out-of-bounds read in uvc_parse_format() The buffer length check before calling uvc_parse_format() only ensured that the buffer has at least 3 bytes (buflen > 2), buf the function accesses buffer[3], requiring at least 4 bytes. This can lead to an out-of-bounds read if the buffer has exactly 3 bytes. Fix it by checking that the buffer has at least 4 bytes in uvc_parse_format(). | low |
CVE-2025-38679 | In the Linux kernel, the following vulnerability has been resolved: media: venus: Fix OOB read due to missing payload bound check Currently, The event_seq_changed() handler processes a variable number of properties sent by the firmware. The number of properties is indicated by the firmware and used to iterate over the payload. However, the payload size is not being validated against the actual message length. This can lead to out-of-bounds memory access if the firmware provides a property count that exceeds the data available in the payload. Such a condition can result in kernel crashes or potential information leaks if memory beyond the buffer is accessed. Fix this by properly validating the remaining size of the payload before each property access and updating bounds accordingly as properties are parsed. This ensures that property parsing is safely bounded within the received message buffer and protects against malformed or malicious firmware behavior. | medium |
CVE-2025-23302 | NVIDIA HGX and DGX contain a vulnerability where a misconfiguration of the LS10 could enable an attacker to set an unsafe debug access level. A successful exploit of this vulnerability might lead to denial of service. | medium |
CVE-2025-23301 | NVIDIA HGX and DGX contain a vulnerability where a misconfiguration of the VBIOS could enable an attacker to set an unsafe debug access level. A successful exploit of this vulnerability might lead to denial of service. | medium |
CVE-2025-23262 | NVIDIA ConnectX contains a vulnerability in the management interface, where an attacker with local access could cause incorrect authorization to modify the configuration. A successful exploit of this vulnerability might lead to denial of service, escalation of privileges, information disclosure, and data tampering. | medium |
CVE-2025-23261 | NVIDIA Cumulus Linux and NVOS products contain a vulnerability, where hashed user passwords are not properly suppressed in log files, potentially disclosing information to unauthorized users. | medium |
CVE-2025-23259 | NVIDIA Mellanox DPDK contains a vulnerability in Poll Mode Driver (PMD), where an attacker on a VM in the system might be able to cause information disclosure and denial of service on the network interface. | medium |
CVE-2025-23258 | NVIDIA DOCA contains a vulnerability in the collectx-dpeserver Debian package for arm64 that could allow an attacker with low privileges to escalate privileges. A successful exploit of this vulnerability might lead to escalation of privileges. | high |
CVE-2025-23257 | NVIDIA DOCA contains a vulnerability in the collectx-clxapidev Debian package that could allow an actor with low privileges to escalate privileges. A successful exploit of this vulnerability might lead to escalation of privileges. | high |
CVE-2025-23256 | NVIDIA BlueField contains a vulnerability in the management interface, where an attacker with local access could cause incorrect authorization to modify the configuration. A successful exploit of this vulnerability might lead to denial of service, escalation of privileges, information disclosure, and data tampering. | high |
CVE-2025-8311 | dotCMS versions 24.03.22 and after, identified a Boolean-based blind SQLi vulnerability in the /api/v1/contenttype endpoint. This endpoint uses the sites query parameter, which accepts a comma-separated list of site identifiers or keys. The vulnerability was triggered via the sites parameter, which was directly concatenated into a SQL query without proper sanitization. Exploitation allowed an authenticated attacker with low privileges to extract data from database, perform privilege escalation, or trigger denial-of-service conditions. The vulnerability was verified using tools such as SQLMap and confirmed to allow full database exfiltration and potential denial-of-service conditions via crafted payloads. The vulnerability is fixed in the following versions of dotCMS stack: 25.08.14 / 25.07.10-1v2 LTS / 24.12.27v10 LTS / 24.04.24v21 LTS | critical |
CVE-2025-6785 | Securing externally available CAN wires can easily allow physical access to the CAN bus, allowing possible injection of specially formed CAN messages to control remote start functions of the vehicle. Testing completed on Tesla Model 3 vehicles with software version v11.1 (2023.20.9 ee6de92ddac5). This issue affects Model 3: With software versions from 2023.Xx before 2023.44. | medium |
CVE-2025-2694 | IBM Sterling B2B Integrator 6.0.0.0 through 6.1.2.7_1 and 6.2.0.0 through 6.2.0.4 and IBM Sterling File Gateway 6.0.0.0 through 6.1.2.7_1 and 6.2.0.0 through 6.2.0.4 is vulnerable to cross-site scripting. This vulnerability allows a privileged user to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. | medium |
CVE-2025-2667 | IBM Sterling B2B Integrator 6.0.0.0 through 6.1.2.7_1 and 6.2.0.0 through 6.2.0.4 and IBM Sterling File Gateway 6.0.0.0 through 6.1.2.7_1 and 6.2.0.0 through 6.2.0.4 could disclose sensitive system information about the server to a privileged user that could aid in further attacks against the system. | medium |