Updated CVEs

IDDescriptionSeverity
CVE-2025-38079In the Linux kernel, the following vulnerability has been resolved: crypto: algif_hash - fix double free in hash_accept If accept(2) is called on socket type algif_hash with MSG_MORE flag set and crypto_ahash_import fails, sk2 is freed. However, it is also freed in af_alg_release, leading to slab-use-after-free error.
high
CVE-2025-38078In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix race of buffer access at PCM OSS layer The PCM OSS layer tries to clear the buffer with the silence data at initialization (or reconfiguration) of a stream with the explicit call of snd_pcm_format_set_silence() with runtime->dma_area. But this may lead to a UAF because the accessed runtime->dma_area might be freed concurrently, as it's performed outside the PCM ops. For avoiding it, move the code into the PCM core and perform it inside the buffer access lock, so that it won't be changed during the operation.
high
CVE-2025-38077In the Linux kernel, the following vulnerability has been resolved: platform/x86: dell-wmi-sysman: Avoid buffer overflow in current_password_store() If the 'buf' array received from the user contains an empty string, the 'length' variable will be zero. Accessing the 'buf' array element with index 'length - 1' will result in a buffer overflow. Add a check for an empty string. Found by Linux Verification Center (linuxtesting.org) with SVACE.
high
CVE-2025-38076In the Linux kernel, the following vulnerability has been resolved: alloc_tag: allocate percpu counters for module tags dynamically When a module gets unloaded it checks whether any of its tags are still in use and if so, we keep the memory containing module's allocation tags alive until all tags are unused. However percpu counters referenced by the tags are freed by free_module(). This will lead to UAF if the memory allocated by a module is accessed after module was unloaded. To fix this we allocate percpu counters for module allocation tags dynamically and we keep it alive for tags which are still in use after module unloading. This also removes the requirement of a larger PERCPU_MODULE_RESERVE when memory allocation profiling is enabled because percpu memory for counters does not need to be reserved anymore.
medium
CVE-2025-38075In the Linux kernel, the following vulnerability has been resolved: scsi: target: iscsi: Fix timeout on deleted connection NOPIN response timer may expire on a deleted connection and crash with such logs: Did not receive response to NOPIN on CID: 0, failing connection for I_T Nexus (null),i,0x00023d000125,iqn.2017-01.com.iscsi.target,t,0x3d BUG: Kernel NULL pointer dereference on read at 0x00000000 NIP strlcpy+0x8/0xb0 LR iscsit_fill_cxn_timeout_err_stats+0x5c/0xc0 [iscsi_target_mod] Call Trace: iscsit_handle_nopin_response_timeout+0xfc/0x120 [iscsi_target_mod] call_timer_fn+0x58/0x1f0 run_timer_softirq+0x740/0x860 __do_softirq+0x16c/0x420 irq_exit+0x188/0x1c0 timer_interrupt+0x184/0x410 That is because nopin response timer may be re-started on nopin timer expiration. Stop nopin timer before stopping the nopin response timer to be sure that no one of them will be re-started.
medium
CVE-2025-38074In the Linux kernel, the following vulnerability has been resolved: vhost-scsi: protect vq->log_used with vq->mutex The vhost-scsi completion path may access vq->log_base when vq->log_used is already set to false. vhost-thread QEMU-thread vhost_scsi_complete_cmd_work() -> vhost_add_used() -> vhost_add_used_n() if (unlikely(vq->log_used)) QEMU disables vq->log_used via VHOST_SET_VRING_ADDR. mutex_lock(&vq->mutex); vq->log_used = false now! mutex_unlock(&vq->mutex); QEMU gfree(vq->log_base) log_used() -> log_write(vq->log_base) Assuming the VMM is QEMU. The vq->log_base is from QEMU userpace and can be reclaimed via gfree(). As a result, this causes invalid memory writes to QEMU userspace. The control queue path has the same issue.
medium
CVE-2025-38073In the Linux kernel, the following vulnerability has been resolved: block: fix race between set_blocksize and read paths With the new large sector size support, it's now the case that set_blocksize can change i_blksize and the folio order in a manner that conflicts with a concurrent reader and causes a kernel crash. Specifically, let's say that udev-worker calls libblkid to detect the labels on a block device. The read call can create an order-0 folio to read the first 4096 bytes from the disk. But then udev is preempted. Next, someone tries to mount an 8k-sectorsize filesystem from the same block device. The filesystem calls set_blksize, which sets i_blksize to 8192 and the minimum folio order to 1. Now udev resumes, still holding the order-0 folio it allocated. It then tries to schedule a read bio and do_mpage_readahead tries to create bufferheads for the folio. Unfortunately, blocks_per_folio == 0 because the page size is 4096 but the blocksize is 8192 so no bufferheads are attached and the bh walk never sets bdev. We then submit the bio with a NULL block device and crash. Therefore, truncate the page cache after flushing but before updating i_blksize. However, that's not enough -- we also need to lock out file IO and page faults during the update. Take both the i_rwsem and the invalidate_lock in exclusive mode for invalidations, and in shared mode for read/write operations. I don't know if this is the correct fix, but xfs/259 found it.
medium
CVE-2025-38072In the Linux kernel, the following vulnerability has been resolved: libnvdimm/labels: Fix divide error in nd_label_data_init() If a faulty CXL memory device returns a broken zero LSA size in its memory device information (Identify Memory Device (Opcode 4000h), CXL spec. 3.1, 8.2.9.9.1.1), a divide error occurs in the libnvdimm driver: Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:nd_label_data_init+0x10e/0x800 [libnvdimm] Code and flow: 1) CXL Command 4000h returns LSA size = 0 2) config_size is assigned to zero LSA size (CXL pmem driver): drivers/cxl/pmem.c: .config_size = mds->lsa_size, 3) max_xfer is set to zero (nvdimm driver): drivers/nvdimm/label.c: max_xfer = min_t(size_t, ndd->nsarea.max_xfer, config_size); 4) A subsequent DIV_ROUND_UP() causes a division by zero: drivers/nvdimm/label.c: /* Make our initial read size a multiple of max_xfer size */ drivers/nvdimm/label.c: read_size = min(DIV_ROUND_UP(read_size, max_xfer) * max_xfer, drivers/nvdimm/label.c- config_size); Fix this by checking the config size parameter by extending an existing check.
medium
CVE-2025-38071In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation.
medium
CVE-2025-38070In the Linux kernel, the following vulnerability has been resolved: ASoC: sma1307: Add NULL check in sma1307_setting_loaded() All varibale allocated by kzalloc and devm_kzalloc could be NULL. Multiple pointer checks and their cleanup are added. This issue is found by our static analysis tool
medium
CVE-2025-38069In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: pci-epf-test: Fix double free that causes kernel to oops Fix a kernel oops found while testing the stm32_pcie Endpoint driver with handling of PERST# deassertion: During EP initialization, pci_epf_test_alloc_space() allocates all BARs, which are further freed if epc_set_bar() fails (for instance, due to no free inbound window). However, when pci_epc_set_bar() fails, the error path: pci_epc_set_bar() -> pci_epf_free_space() does not clear the previous assignment to epf_test->reg[bar]. Then, if the host reboots, the PERST# deassertion restarts the BAR allocation sequence with the same allocation failure (no free inbound window), creating a double free situation since epf_test->reg[bar] was deallocated and is still non-NULL. Thus, make sure that pci_epf_alloc_space() and pci_epf_free_space() invocations are symmetric, and as such, set epf_test->reg[bar] to NULL when memory is freed. [kwilczynski: commit log]
high
CVE-2025-38068In the Linux kernel, the following vulnerability has been resolved: crypto: lzo - Fix compression buffer overrun Unlike the decompression code, the compression code in LZO never checked for output overruns. It instead assumes that the caller always provides enough buffer space, disregarding the buffer length provided by the caller. Add a safe compression interface that checks for the end of buffer before each write. Use the safe interface in crypto/lzo.
high
CVE-2025-38067In the Linux kernel, the following vulnerability has been resolved: rseq: Fix segfault on registration when rseq_cs is non-zero The rseq_cs field is documented as being set to 0 by user-space prior to registration, however this is not currently enforced by the kernel. This can result in a segfault on return to user-space if the value stored in the rseq_cs field doesn't point to a valid struct rseq_cs. The correct solution to this would be to fail the rseq registration when the rseq_cs field is non-zero. However, some older versions of glibc will reuse the rseq area of previous threads without clearing the rseq_cs field and will also terminate the process if the rseq registration fails in a secondary thread. This wasn't caught in testing because in this case the leftover rseq_cs does point to a valid struct rseq_cs. What we can do is clear the rseq_cs field on registration when it's non-zero which will prevent segfaults on registration and won't break the glibc versions that reuse rseq areas on thread creation.
medium
CVE-2025-38066In the Linux kernel, the following vulnerability has been resolved: dm cache: prevent BUG_ON by blocking retries on failed device resumes A cache device failing to resume due to mapping errors should not be retried, as the failure leaves a partially initialized policy object. Repeating the resume operation risks triggering BUG_ON when reloading cache mappings into the incomplete policy object. Reproduce steps: 1. create a cache metadata consisting of 512 or more cache blocks, with some mappings stored in the first array block of the mapping array. Here we use cache_restore v1.0 to build the metadata. cat <<EOF >> cmeta.xml <superblock uuid="" block_size="128" nr_cache_blocks="512" \ policy="smq" hint_width="4"> <mappings> <mapping cache_block="0" origin_block="0" dirty="false"/> </mappings> </superblock> EOF dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" cache_restore -i cmeta.xml -o /dev/mapper/cmeta --metadata-version=2 dmsetup remove cmeta 2. wipe the second array block of the mapping array to simulate data degradations. mapping_root=$(dd if=/dev/sdc bs=1c count=8 skip=192 \ 2>/dev/null | hexdump -e '1/8 "%u\n"') ablock=$(dd if=/dev/sdc bs=1c count=8 skip=$((4096*mapping_root+2056)) \ 2>/dev/null | hexdump -e '1/8 "%u\n"') dd if=/dev/zero of=/dev/sdc bs=4k count=1 seek=$ablock 3. try bringing up the cache device. The resume is expected to fail due to the broken array block. dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dmsetup create cache --notable dmsetup load cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" dmsetup resume cache 4. try resuming the cache again. An unexpected BUG_ON is triggered while loading cache mappings. dmsetup resume cache Kernel logs: (snip) ------------[ cut here ]------------ kernel BUG at drivers/md/dm-cache-policy-smq.c:752! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 UID: 0 PID: 332 Comm: dmsetup Not tainted 6.13.4 #3 RIP: 0010:smq_load_mapping+0x3e5/0x570 Fix by disallowing resume operations for devices that failed the initial attempt.
medium
CVE-2025-38065In the Linux kernel, the following vulnerability has been resolved: orangefs: Do not truncate file size 'len' is used to store the result of i_size_read(), so making 'len' a size_t results in truncation to 4GiB on 32-bit systems.
medium
CVE-2025-38064In the Linux kernel, the following vulnerability has been resolved: virtio: break and reset virtio devices on device_shutdown() Hongyu reported a hang on kexec in a VM. QEMU reported invalid memory accesses during the hang. Invalid read at addr 0x102877002, size 2, region '(null)', reason: rejected Invalid write at addr 0x102877A44, size 2, region '(null)', reason: rejected ... It was traced down to virtio-console. Kexec works fine if virtio-console is not in use. The issue is that virtio-console continues to write to the MMIO even after underlying virtio-pci device is reset. Additionally, Eric noticed that IOMMUs are reset before devices, if devices are not reset on shutdown they continue to poke at guest memory and get errors from the IOMMU. Some devices get wedged then. The problem can be solved by breaking all virtio devices on virtio bus shutdown, then resetting them.
high
CVE-2025-38063In the Linux kernel, the following vulnerability has been resolved: dm: fix unconditional IO throttle caused by REQ_PREFLUSH When a bio with REQ_PREFLUSH is submitted to dm, __send_empty_flush() generates a flush_bio with REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, which causes the flush_bio to be throttled by wbt_wait(). An example from v5.4, similar problem also exists in upstream: crash> bt 2091206 PID: 2091206 TASK: ffff2050df92a300 CPU: 109 COMMAND: "kworker/u260:0" #0 [ffff800084a2f7f0] __switch_to at ffff80004008aeb8 #1 [ffff800084a2f820] __schedule at ffff800040bfa0c4 #2 [ffff800084a2f880] schedule at ffff800040bfa4b4 #3 [ffff800084a2f8a0] io_schedule at ffff800040bfa9c4 #4 [ffff800084a2f8c0] rq_qos_wait at ffff8000405925bc #5 [ffff800084a2f940] wbt_wait at ffff8000405bb3a0 #6 [ffff800084a2f9a0] __rq_qos_throttle at ffff800040592254 #7 [ffff800084a2f9c0] blk_mq_make_request at ffff80004057cf38 #8 [ffff800084a2fa60] generic_make_request at ffff800040570138 #9 [ffff800084a2fae0] submit_bio at ffff8000405703b4 #10 [ffff800084a2fb50] xlog_write_iclog at ffff800001280834 [xfs] #11 [ffff800084a2fbb0] xlog_sync at ffff800001280c3c [xfs] #12 [ffff800084a2fbf0] xlog_state_release_iclog at ffff800001280df4 [xfs] #13 [ffff800084a2fc10] xlog_write at ffff80000128203c [xfs] #14 [ffff800084a2fcd0] xlog_cil_push at ffff8000012846dc [xfs] #15 [ffff800084a2fda0] xlog_cil_push_work at ffff800001284a2c [xfs] #16 [ffff800084a2fdb0] process_one_work at ffff800040111d08 #17 [ffff800084a2fe00] worker_thread at ffff8000401121cc #18 [ffff800084a2fe70] kthread at ffff800040118de4 After commit 2def2845cc33 ("xfs: don't allow log IO to be throttled"), the metadata submitted by xlog_write_iclog() should not be throttled. But due to the existence of the dm layer, throttling flush_bio indirectly causes the metadata bio to be throttled. Fix this by conditionally adding REQ_IDLE to flush_bio.bi_opf, which makes wbt_should_throttle() return false to avoid wbt_wait().
medium
CVE-2025-38062In the Linux kernel, the following vulnerability has been resolved: genirq/msi: Store the IOMMU IOVA directly in msi_desc instead of iommu_cookie The IOMMU translation for MSI message addresses has been a 2-step process, separated in time: 1) iommu_dma_prepare_msi(): A cookie pointer containing the IOVA address is stored in the MSI descriptor when an MSI interrupt is allocated. 2) iommu_dma_compose_msi_msg(): this cookie pointer is used to compute a translated message address. This has an inherent lifetime problem for the pointer stored in the cookie that must remain valid between the two steps. However, there is no locking at the irq layer that helps protect the lifetime. Today, this works under the assumption that the iommu domain is not changed while MSI interrupts being programmed. This is true for normal DMA API users within the kernel, as the iommu domain is attached before the driver is probed and cannot be changed while a driver is attached. Classic VFIO type1 also prevented changing the iommu domain while VFIO was running as it does not support changing the "container" after starting up. However, iommufd has improved this so that the iommu domain can be changed during VFIO operation. This potentially allows userspace to directly race VFIO_DEVICE_ATTACH_IOMMUFD_PT (which calls iommu_attach_group()) and VFIO_DEVICE_SET_IRQS (which calls into iommu_dma_compose_msi_msg()). This potentially causes both the cookie pointer and the unlocked call to iommu_get_domain_for_dev() on the MSI translation path to become UAFs. Fix the MSI cookie UAF by removing the cookie pointer. The translated IOVA address is already known during iommu_dma_prepare_msi() and cannot change. Thus, it can simply be stored as an integer in the MSI descriptor. The other UAF related to iommu_get_domain_for_dev() will be addressed in patch "iommu: Make iommu_dma_prepare_msi() into a generic operation" by using the IOMMU group mutex.
medium
CVE-2025-38061In the Linux kernel, the following vulnerability has been resolved: net: pktgen: fix access outside of user given buffer in pktgen_thread_write() Honour the user given buffer size for the strn_len() calls (otherwise strn_len() will access memory outside of the user given buffer).
high
CVE-2025-38060In the Linux kernel, the following vulnerability has been resolved: bpf: copy_verifier_state() should copy 'loop_entry' field The bpf_verifier_state.loop_entry state should be copied by copy_verifier_state(). Otherwise, .loop_entry values from unrelated states would poison env->cur_state. Additionally, env->stack should not contain any states with .loop_entry != NULL. The states in env->stack are yet to be verified, while .loop_entry is set for states that reached an equivalent state. This means that env->cur_state->loop_entry should always be NULL after pop_stack(). See the selftest in the next commit for an example of the program that is not safe yet is accepted by verifier w/o this fix. This change has some verification performance impact for selftests: File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) ---------------------------------- ---------------------------- --------- --------- -------------- ---------- ---------- ------------- arena_htab.bpf.o arena_htab_llvm 717 426 -291 (-40.59%) 57 37 -20 (-35.09%) arena_htab_asm.bpf.o arena_htab_asm 597 445 -152 (-25.46%) 47 37 -10 (-21.28%) arena_list.bpf.o arena_list_del 309 279 -30 (-9.71%) 23 14 -9 (-39.13%) iters.bpf.o iter_subprog_check_stacksafe 155 141 -14 (-9.03%) 15 14 -1 (-6.67%) iters.bpf.o iter_subprog_iters 1094 1003 -91 (-8.32%) 88 83 -5 (-5.68%) iters.bpf.o loop_state_deps2 479 725 +246 (+51.36%) 46 63 +17 (+36.96%) kmem_cache_iter.bpf.o open_coded_iter 63 59 -4 (-6.35%) 7 6 -1 (-14.29%) verifier_bits_iter.bpf.o max_words 92 84 -8 (-8.70%) 8 7 -1 (-12.50%) verifier_iterating_callbacks.bpf.o cond_break2 113 107 -6 (-5.31%) 12 12 +0 (+0.00%) And significant negative impact for sched_ext: File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) ----------------- ---------------------- --------- --------- -------------------- ---------- ---------- ------------------ bpf.bpf.o lavd_init 7039 14723 +7684 (+109.16%) 490 1139 +649 (+132.45%) bpf.bpf.o layered_dispatch 11485 10548 -937 (-8.16%) 848 762 -86 (-10.14%) bpf.bpf.o layered_dump 7422 1000001 +992579 (+13373.47%) 681 31178 +30497 (+4478.27%) bpf.bpf.o layered_enqueue 16854 71127 +54273 (+322.02%) 1611 6450 +4839 (+300.37%) bpf.bpf.o p2dq_dispatch 665 791 +126 (+18.95%) 68 78 +10 (+14.71%) bpf.bpf.o p2dq_init 2343 2980 +637 (+27.19%) 201 237 +36 (+17.91%) bpf.bpf.o refresh_layer_cpumasks 16487 674760 +658273 (+3992.68%) 1770 65370 +63600 (+3593.22%) bpf.bpf.o rusty_select_cpu 1937 40872 +38935 (+2010.07%) 177 3210 +3033 (+1713.56%) scx_central.bpf.o central_dispatch 636 2687 +2051 (+322.48%) 63 227 +164 (+260.32%) scx_nest.bpf.o nest_init 636 815 +179 (+28.14%) 60 73 +13 (+21.67%) scx_qmap.bpf.o qmap_dispatch ---truncated---
high
CVE-2025-38059In the Linux kernel, the following vulnerability has been resolved: btrfs: avoid NULL pointer dereference if no valid csum tree [BUG] When trying read-only scrub on a btrfs with rescue=idatacsums mount option, it will crash with the following call trace: BUG: kernel NULL pointer dereference, address: 0000000000000208 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 1 UID: 0 PID: 835 Comm: btrfs Tainted: G O 6.15.0-rc3-custom+ #236 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022 RIP: 0010:btrfs_lookup_csums_bitmap+0x49/0x480 [btrfs] Call Trace: <TASK> scrub_find_fill_first_stripe+0x35b/0x3d0 [btrfs] scrub_simple_mirror+0x175/0x290 [btrfs] scrub_stripe+0x5f7/0x6f0 [btrfs] scrub_chunk+0x9a/0x150 [btrfs] scrub_enumerate_chunks+0x333/0x660 [btrfs] btrfs_scrub_dev+0x23e/0x600 [btrfs] btrfs_ioctl+0x1dcf/0x2f80 [btrfs] __x64_sys_ioctl+0x97/0xc0 do_syscall_64+0x4f/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e [CAUSE] Mount option "rescue=idatacsums" will completely skip loading the csum tree, so that any data read will not find any data csum thus we will ignore data checksum verification. Normally call sites utilizing csum tree will check the fs state flag NO_DATA_CSUMS bit, but unfortunately scrub does not check that bit at all. This results in scrub to call btrfs_search_slot() on a NULL pointer and triggered above crash. [FIX] Check both extent and csum tree root before doing any tree search.
medium
CVE-2025-38058In the Linux kernel, the following vulnerability has been resolved: __legitimize_mnt(): check for MNT_SYNC_UMOUNT should be under mount_lock ... or we risk stealing final mntput from sync umount - raising mnt_count after umount(2) has verified that victim is not busy, but before it has set MNT_SYNC_UMOUNT; in that case __legitimize_mnt() doesn't see that it's safe to quietly undo mnt_count increment and leaves dropping the reference to caller, where it'll be a full-blown mntput(). Check under mount_lock is needed; leaving the current one done before taking that makes no sense - it's nowhere near common enough to bother with.
medium
CVE-2025-38057In the Linux kernel, the following vulnerability has been resolved: espintcp: fix skb leaks A few error paths are missing a kfree_skb.
medium
CVE-2025-38056In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Intel: hda: Fix UAF when reloading module hda_generic_machine_select() appends -idisp to the tplg filename by allocating a new string with devm_kasprintf(), then stores the string right back into the global variable snd_soc_acpi_intel_hda_machines. When the module is unloaded, this memory is freed, resulting in a global variable pointing to freed memory. Reloading the module then triggers a use-after-free: BUG: KFENCE: use-after-free read in string+0x48/0xe0 Use-after-free read at 0x00000000967e0109 (in kfence-#99): string+0x48/0xe0 vsnprintf+0x329/0x6e0 devm_kvasprintf+0x54/0xb0 devm_kasprintf+0x58/0x80 hda_machine_select.cold+0x198/0x17a2 [snd_sof_intel_hda_generic] sof_probe_work+0x7f/0x600 [snd_sof] process_one_work+0x17b/0x330 worker_thread+0x2ce/0x3f0 kthread+0xcf/0x100 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1a/0x30 kfence-#99: 0x00000000198a940f-0x00000000ace47d9d, size=64, cache=kmalloc-64 allocated by task 333 on cpu 8 at 17.798069s (130.453553s ago): devm_kmalloc+0x52/0x120 devm_kvasprintf+0x66/0xb0 devm_kasprintf+0x58/0x80 hda_machine_select.cold+0x198/0x17a2 [snd_sof_intel_hda_generic] sof_probe_work+0x7f/0x600 [snd_sof] process_one_work+0x17b/0x330 worker_thread+0x2ce/0x3f0 kthread+0xcf/0x100 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1a/0x30 freed by task 1543 on cpu 4 at 141.586686s (6.665010s ago): release_nodes+0x43/0xb0 devres_release_all+0x90/0xf0 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1c1/0x200 driver_detach+0x48/0x90 bus_remove_driver+0x6d/0xf0 pci_unregister_driver+0x42/0xb0 __do_sys_delete_module+0x1d1/0x310 do_syscall_64+0x82/0x190 entry_SYSCALL_64_after_hwframe+0x76/0x7e Fix it by copying the match array with devm_kmemdup_array() before we modify it.
high
CVE-2025-38055In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: Fix segfault with PEBS-via-PT with sample_freq Currently, using PEBS-via-PT with a sample frequency instead of a sample period, causes a segfault. For example: BUG: kernel NULL pointer dereference, address: 0000000000000195 <NMI> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0xca/0x290 ? exc_page_fault+0x7e/0x1b0 ? asm_exc_page_fault+0x26/0x30 ? intel_pmu_pebs_event_update_no_drain+0x40/0x60 ? intel_pmu_pebs_event_update_no_drain+0x32/0x60 intel_pmu_drain_pebs_icl+0x333/0x350 handle_pmi_common+0x272/0x3c0 intel_pmu_handle_irq+0x10a/0x2e0 perf_event_nmi_handler+0x2a/0x50 That happens because intel_pmu_pebs_event_update_no_drain() assumes all the pebs_enabled bits represent counter indexes, which is not always the case. In this particular case, bits 60 and 61 are set for PEBS-via-PT purposes. The behaviour of PEBS-via-PT with sample frequency is questionable because although a PMI is generated (PEBS_PMI_AFTER_EACH_RECORD), the period is not adjusted anyway. Putting that aside, fix intel_pmu_pebs_event_update_no_drain() by passing the mask of counter bits instead of 'size'. Note, prior to the Fixes commit, 'size' would be limited to the maximum counter index, so the issue was not hit.
medium
CVE-2025-38054In the Linux kernel, the following vulnerability has been resolved: ptp: ocp: Limit signal/freq counts in summary output functions The debugfs summary output could access uninitialized elements in the freq_in[] and signal_out[] arrays, causing NULL pointer dereferences and triggering a kernel Oops (page_fault_oops). This patch adds u8 fields (nr_freq_in, nr_signal_out) to track the number of initialized elements, with a maximum of 4 per array. The summary output functions are updated to respect these limits, preventing out-of-bounds access and ensuring safe array handling. Widen the label variables because the change confuses GCC about max length of the strings.
medium
CVE-2025-38053In the Linux kernel, the following vulnerability has been resolved: idpf: fix null-ptr-deref in idpf_features_check idpf_features_check is used to validate the TX packet. skb header length is compared with the hardware supported value received from the device control plane. The value is stored in the adapter structure and to access it, vport pointer is used. During reset all the vports are released and the vport pointer that the netdev private structure points to is NULL. To avoid null-ptr-deref, store the max header length value in netdev private structure. This also helps to cache the value and avoid accessing adapter pointer in hot path. BUG: kernel NULL pointer dereference, address: 0000000000000068 ... RIP: 0010:idpf_features_check+0x6d/0xe0 [idpf] Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x154/0x520 ? exc_page_fault+0x76/0x190 ? asm_exc_page_fault+0x26/0x30 ? idpf_features_check+0x6d/0xe0 [idpf] netif_skb_features+0x88/0x310 validate_xmit_skb+0x2a/0x2b0 validate_xmit_skb_list+0x4c/0x70 sch_direct_xmit+0x19d/0x3a0 __dev_queue_xmit+0xb74/0xe70 ...
medium
CVE-2025-38052In the Linux kernel, the following vulnerability has been resolved: net/tipc: fix slab-use-after-free Read in tipc_aead_encrypt_done Syzbot reported a slab-use-after-free with the following call trace: ================================================================== BUG: KASAN: slab-use-after-free in tipc_aead_encrypt_done+0x4bd/0x510 net/tipc/crypto.c:840 Read of size 8 at addr ffff88807a733000 by task kworker/1:0/25 Call Trace: kasan_report+0xd9/0x110 mm/kasan/report.c:601 tipc_aead_encrypt_done+0x4bd/0x510 net/tipc/crypto.c:840 crypto_request_complete include/crypto/algapi.h:266 aead_request_complete include/crypto/internal/aead.h:85 cryptd_aead_crypt+0x3b8/0x750 crypto/cryptd.c:772 crypto_request_complete include/crypto/algapi.h:266 cryptd_queue_worker+0x131/0x200 crypto/cryptd.c:181 process_one_work+0x9fb/0x1b60 kernel/workqueue.c:3231 Allocated by task 8355: kzalloc_noprof include/linux/slab.h:778 tipc_crypto_start+0xcc/0x9e0 net/tipc/crypto.c:1466 tipc_init_net+0x2dd/0x430 net/tipc/core.c:72 ops_init+0xb9/0x650 net/core/net_namespace.c:139 setup_net+0x435/0xb40 net/core/net_namespace.c:343 copy_net_ns+0x2f0/0x670 net/core/net_namespace.c:508 create_new_namespaces+0x3ea/0xb10 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0xc0/0x1f0 kernel/nsproxy.c:228 ksys_unshare+0x419/0x970 kernel/fork.c:3323 __do_sys_unshare kernel/fork.c:3394 Freed by task 63: kfree+0x12a/0x3b0 mm/slub.c:4557 tipc_crypto_stop+0x23c/0x500 net/tipc/crypto.c:1539 tipc_exit_net+0x8c/0x110 net/tipc/core.c:119 ops_exit_list+0xb0/0x180 net/core/net_namespace.c:173 cleanup_net+0x5b7/0xbf0 net/core/net_namespace.c:640 process_one_work+0x9fb/0x1b60 kernel/workqueue.c:3231 After freed the tipc_crypto tx by delete namespace, tipc_aead_encrypt_done may still visit it in cryptd_queue_worker workqueue. I reproduce this issue by: ip netns add ns1 ip link add veth1 type veth peer name veth2 ip link set veth1 netns ns1 ip netns exec ns1 tipc bearer enable media eth dev veth1 ip netns exec ns1 tipc node set key this_is_a_master_key master ip netns exec ns1 tipc bearer disable media eth dev veth1 ip netns del ns1 The key of reproduction is that, simd_aead_encrypt is interrupted, leading to crypto_simd_usable() return false. Thus, the cryptd_queue_worker is triggered, and the tipc_crypto tx will be visited. tipc_disc_timeout tipc_bearer_xmit_skb tipc_crypto_xmit tipc_aead_encrypt crypto_aead_encrypt // encrypt() simd_aead_encrypt // crypto_simd_usable() is false child = &ctx->cryptd_tfm->base; simd_aead_encrypt crypto_aead_encrypt // encrypt() cryptd_aead_encrypt_enqueue cryptd_aead_enqueue cryptd_enqueue_request // trigger cryptd_queue_worker queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work) Fix this by holding net reference count before encrypt.
high
CVE-2025-38051In the Linux kernel, the following vulnerability has been resolved: smb: client: Fix use-after-free in cifs_fill_dirent There is a race condition in the readdir concurrency process, which may access the rsp buffer after it has been released, triggering the following KASAN warning. ================================================================== BUG: KASAN: slab-use-after-free in cifs_fill_dirent+0xb03/0xb60 [cifs] Read of size 4 at addr ffff8880099b819c by task a.out/342975 CPU: 2 UID: 0 PID: 342975 Comm: a.out Not tainted 6.15.0-rc6+ #240 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x53/0x70 print_report+0xce/0x640 kasan_report+0xb8/0xf0 cifs_fill_dirent+0xb03/0xb60 [cifs] cifs_readdir+0x12cb/0x3190 [cifs] iterate_dir+0x1a1/0x520 __x64_sys_getdents+0x134/0x220 do_syscall_64+0x4b/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f996f64b9f9 Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0d f7 c3 0c 00 f7 d8 64 89 8 RSP: 002b:00007f996f53de78 EFLAGS: 00000207 ORIG_RAX: 000000000000004e RAX: ffffffffffffffda RBX: 00007f996f53ecdc RCX: 00007f996f64b9f9 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007f996f53dea0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000207 R12: ffffffffffffff88 R13: 0000000000000000 R14: 00007ffc8cd9a500 R15: 00007f996f51e000 </TASK> Allocated by task 408: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x6e/0x70 kmem_cache_alloc_noprof+0x117/0x3d0 mempool_alloc_noprof+0xf2/0x2c0 cifs_buf_get+0x36/0x80 [cifs] allocate_buffers+0x1d2/0x330 [cifs] cifs_demultiplex_thread+0x22b/0x2690 [cifs] kthread+0x394/0x720 ret_from_fork+0x34/0x70 ret_from_fork_asm+0x1a/0x30 Freed by task 342979: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x37/0x50 kmem_cache_free+0x2b8/0x500 cifs_buf_release+0x3c/0x70 [cifs] cifs_readdir+0x1c97/0x3190 [cifs] iterate_dir+0x1a1/0x520 __x64_sys_getdents64+0x134/0x220 do_syscall_64+0x4b/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff8880099b8000 which belongs to the cache cifs_request of size 16588 The buggy address is located 412 bytes inside of freed 16588-byte region [ffff8880099b8000, ffff8880099bc0cc) The buggy address belongs to the physical page: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99b8 head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 anon flags: 0x80000000000040(head|node=0|zone=1) page_type: f5(slab) raw: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001 raw: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000 head: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001 head: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000 head: 0080000000000003 ffffea0000266e01 00000000ffffffff 00000000ffffffff head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000008 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880099b8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880099b8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880099b8180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880099b8200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880099b8280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== POC is available in the link [1]. The problem triggering process is as follows: Process 1 Process 2 ----------------------------------- ---truncated---
high
CVE-2025-38050In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix kernel NULL pointer dereference when replacing free hugetlb folios A kernel crash was observed when replacing free hugetlb folios: BUG: kernel NULL pointer dereference, address: 0000000000000028 PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 28 UID: 0 PID: 29639 Comm: test_cma.sh Tainted 6.15.0-rc6-zp #41 PREEMPT(voluntary) RIP: 0010:alloc_and_dissolve_hugetlb_folio+0x1d/0x1f0 RSP: 0018:ffffc9000b30fa90 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000342cca RCX: ffffea0043000000 RDX: ffffc9000b30fb08 RSI: ffffea0043000000 RDI: 0000000000000000 RBP: ffffc9000b30fb20 R08: 0000000000001000 R09: 0000000000000000 R10: ffff88886f92eb00 R11: 0000000000000000 R12: ffffea0043000000 R13: 0000000000000000 R14: 00000000010c0200 R15: 0000000000000004 FS: 00007fcda5f14740(0000) GS:ffff8888ec1d8000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000028 CR3: 0000000391402000 CR4: 0000000000350ef0 Call Trace: <TASK> replace_free_hugepage_folios+0xb6/0x100 alloc_contig_range_noprof+0x18a/0x590 ? srso_return_thunk+0x5/0x5f ? down_read+0x12/0xa0 ? srso_return_thunk+0x5/0x5f cma_range_alloc.constprop.0+0x131/0x290 __cma_alloc+0xcf/0x2c0 cma_alloc_write+0x43/0xb0 simple_attr_write_xsigned.constprop.0.isra.0+0xb2/0x110 debugfs_attr_write+0x46/0x70 full_proxy_write+0x62/0xa0 vfs_write+0xf8/0x420 ? srso_return_thunk+0x5/0x5f ? filp_flush+0x86/0xa0 ? srso_return_thunk+0x5/0x5f ? filp_close+0x1f/0x30 ? srso_return_thunk+0x5/0x5f ? do_dup2+0xaf/0x160 ? srso_return_thunk+0x5/0x5f ksys_write+0x65/0xe0 do_syscall_64+0x64/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e There is a potential race between __update_and_free_hugetlb_folio() and replace_free_hugepage_folios(): CPU1 CPU2 __update_and_free_hugetlb_folio replace_free_hugepage_folios folio_test_hugetlb(folio) -- It's still hugetlb folio. __folio_clear_hugetlb(folio) hugetlb_free_folio(folio) h = folio_hstate(folio) -- Here, h is NULL pointer When the above race condition occurs, folio_hstate(folio) returns NULL, and subsequent access to this NULL pointer will cause the system to crash. To resolve this issue, execute folio_hstate(folio) under the protection of the hugetlb_lock lock, ensuring that folio_hstate(folio) does not return NULL.
medium
CVE-2025-38048In the Linux kernel, the following vulnerability has been resolved: virtio_ring: Fix data race by tagging event_triggered as racy for KCSAN syzbot reports a data-race when accessing the event_triggered, here is the simplified stack when the issue occurred: ================================================================== BUG: KCSAN: data-race in virtqueue_disable_cb / virtqueue_enable_cb_delayed write to 0xffff8881025bc452 of 1 bytes by task 3288 on cpu 0: virtqueue_enable_cb_delayed+0x42/0x3c0 drivers/virtio/virtio_ring.c:2653 start_xmit+0x230/0x1310 drivers/net/virtio_net.c:3264 __netdev_start_xmit include/linux/netdevice.h:5151 [inline] netdev_start_xmit include/linux/netdevice.h:5160 [inline] xmit_one net/core/dev.c:3800 [inline] read to 0xffff8881025bc452 of 1 bytes by interrupt on cpu 1: virtqueue_disable_cb_split drivers/virtio/virtio_ring.c:880 [inline] virtqueue_disable_cb+0x92/0x180 drivers/virtio/virtio_ring.c:2566 skb_xmit_done+0x5f/0x140 drivers/net/virtio_net.c:777 vring_interrupt+0x161/0x190 drivers/virtio/virtio_ring.c:2715 __handle_irq_event_percpu+0x95/0x490 kernel/irq/handle.c:158 handle_irq_event_percpu kernel/irq/handle.c:193 [inline] value changed: 0x01 -> 0x00 ================================================================== When the data race occurs, the function virtqueue_enable_cb_delayed() sets event_triggered to false, and virtqueue_disable_cb_split/packed() reads it as false due to the race condition. Since event_triggered is an unreliable hint used for optimization, this should only cause the driver temporarily suggest that the device not send an interrupt notification when the event index is used. Fix this KCSAN reported data-race issue by explicitly tagging the access as data_racy.
medium
CVE-2025-38047In the Linux kernel, the following vulnerability has been resolved: x86/fred: Fix system hang during S4 resume with FRED enabled Upon a wakeup from S4, the restore kernel starts and initializes the FRED MSRs as needed from its perspective. It then loads a hibernation image, including the image kernel, and attempts to load image pages directly into their original page frames used before hibernation unless those frames are currently in use. Once all pages are moved to their original locations, it jumps to a "trampoline" page in the image kernel. At this point, the image kernel takes control, but the FRED MSRs still contain values set by the restore kernel, which may differ from those set by the image kernel before hibernation. Therefore, the image kernel must ensure the FRED MSRs have the same values as before hibernation. Since these values depend only on the location of the kernel text and data, they can be recomputed from scratch.
high
CVE-2025-38046Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
No Score
CVE-2025-38045In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: fix debug actions order The order of actions taken for debug was implemented incorrectly. Now we implemented the dump split and do the FW reset only in the middle of the dump (rather than the FW killing itself on error.) As a result, some of the actions taken when applying the config will now crash the device, so we need to fix the order.
high
CVE-2025-38044In the Linux kernel, the following vulnerability has been resolved: media: cx231xx: set device_caps for 417 The video_device for the MPEG encoder did not set device_caps. Add this, otherwise the video device can't be registered (you get a WARN_ON instead). Not seen before since currently 417 support is disabled, but I found this while experimenting with it.
medium
CVE-2025-38043In the Linux kernel, the following vulnerability has been resolved: firmware: arm_ffa: Set dma_mask for ffa devices Set dma_mask for FFA devices, otherwise DMA allocation using the device pointer lead to following warning: WARNING: CPU: 1 PID: 1 at kernel/dma/mapping.c:597 dma_alloc_attrs+0xe0/0x124
high
CVE-2025-38042In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: k3-udma-glue: Drop skip_fdq argument from k3_udma_glue_reset_rx_chn The user of k3_udma_glue_reset_rx_chn() e.g. ti_am65_cpsw_nuss can run on multiple platforms having different DMA architectures. On some platforms there can be one FDQ for all flows in the RX channel while for others there is a separate FDQ for each flow in the RX channel. So far we have been relying on the skip_fdq argument of k3_udma_glue_reset_rx_chn(). Instead of relying on the user to provide this information, infer it based on DMA architecture during k3_udma_glue_request_rx_chn() and save it in an internal flag 'single_fdq'. Use that flag at k3_udma_glue_reset_rx_chn() to deicide if the FDQ needs to be cleared for every flow or just for flow 0. Fixes the below issue on ti_am65_cpsw_nuss driver on AM62-SK. > ip link set eth1 down > ip link set eth0 down > ethtool -L eth0 rx 8 > ip link set eth0 up > modprobe -r ti_am65_cpsw_nuss [ 103.045726] ------------[ cut here ]------------ [ 103.050505] k3_knav_desc_pool size 512000 != avail 64000 [ 103.050703] WARNING: CPU: 1 PID: 450 at drivers/net/ethernet/ti/k3-cppi-desc-pool.c:33 k3_cppi_desc_pool_destroy+0xa0/0xa8 [k3_cppi_desc_pool] [ 103.068810] Modules linked in: ti_am65_cpsw_nuss(-) k3_cppi_desc_pool snd_soc_hdmi_codec crct10dif_ce snd_soc_simple_card snd_soc_simple_card_utils display_connector rtc_ti_k3 k3_j72xx_bandgap tidss drm_client_lib snd_soc_davinci_mcas p drm_dma_helper tps6598x phylink snd_soc_ti_udma rti_wdt drm_display_helper snd_soc_tlv320aic3x_i2c typec at24 phy_gmii_sel snd_soc_ti_edma snd_soc_tlv320aic3x sii902x snd_soc_ti_sdma sa2ul omap_mailbox drm_kms_helper authenc cfg80211 r fkill fuse drm drm_panel_orientation_quirks backlight ip_tables x_tables ipv6 [last unloaded: k3_cppi_desc_pool] [ 103.119950] CPU: 1 UID: 0 PID: 450 Comm: modprobe Not tainted 6.13.0-rc7-00001-g9c5e3435fa66 #1011 [ 103.119968] Hardware name: Texas Instruments AM625 SK (DT) [ 103.119974] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 103.119983] pc : k3_cppi_desc_pool_destroy+0xa0/0xa8 [k3_cppi_desc_pool] [ 103.148007] lr : k3_cppi_desc_pool_destroy+0xa0/0xa8 [k3_cppi_desc_pool] [ 103.154709] sp : ffff8000826ebbc0 [ 103.158015] x29: ffff8000826ebbc0 x28: ffff0000090b6300 x27: 0000000000000000 [ 103.165145] x26: 0000000000000000 x25: 0000000000000000 x24: ffff0000019df6b0 [ 103.172271] x23: ffff0000019df6b8 x22: ffff0000019df410 x21: ffff8000826ebc88 [ 103.179397] x20: 000000000007d000 x19: ffff00000a3b3000 x18: 0000000000000000 [ 103.186522] x17: 0000000000000000 x16: 0000000000000000 x15: 000001e8c35e1cde [ 103.193647] x14: 0000000000000396 x13: 000000000000035c x12: 0000000000000000 [ 103.200772] x11: 000000000000003a x10: 00000000000009c0 x9 : ffff8000826eba20 [ 103.207897] x8 : ffff0000090b6d20 x7 : ffff00007728c180 x6 : ffff00007728c100 [ 103.215022] x5 : 0000000000000001 x4 : ffff000000508a50 x3 : ffff7ffff6146000 [ 103.222147] x2 : 0000000000000000 x1 : e300b4173ee6b200 x0 : 0000000000000000 [ 103.229274] Call trace: [ 103.231714] k3_cppi_desc_pool_destroy+0xa0/0xa8 [k3_cppi_desc_pool] (P) [ 103.238408] am65_cpsw_nuss_free_rx_chns+0x28/0x4c [ti_am65_cpsw_nuss] [ 103.244942] devm_action_release+0x14/0x20 [ 103.249040] release_nodes+0x3c/0x68 [ 103.252610] devres_release_all+0x8c/0xdc [ 103.256614] device_unbind_cleanup+0x18/0x60 [ 103.260876] device_release_driver_internal+0xf8/0x178 [ 103.266004] driver_detach+0x50/0x9c [ 103.269571] bus_remove_driver+0x6c/0xbc [ 103.273485] driver_unregister+0x30/0x60 [ 103.277401] platform_driver_unregister+0x14/0x20 [ 103.282096] am65_cpsw_nuss_driver_exit+0x18/0xff4 [ti_am65_cpsw_nuss] [ 103.288620] __arm64_sys_delete_module+0x17c/0x25c [ 103.293404] invoke_syscall+0x44/0x100 [ 103.297149] el0_svc_common.constprop.0+0xc0/0xe0 [ 103.301845] do_el0_svc+0x1c/0x28 [ 103.305155] el0_svc+0x28/0x98 ---truncated---
medium
CVE-2025-38041In the Linux kernel, the following vulnerability has been resolved: clk: sunxi-ng: h616: Reparent GPU clock during frequency changes The H616 manual does not state that the GPU PLL supports dynamic frequency configuration, so we must take extra care when changing the frequency. Currently any attempt to do device DVFS on the GPU lead to panfrost various ooops, and GPU hangs. The manual describes the algorithm for changing the PLL frequency, which the CPU PLL notifier code already support, so we reuse that to reparent the GPU clock to GPU1 clock during frequency changes.
high
CVE-2025-38040In the Linux kernel, the following vulnerability has been resolved: serial: mctrl_gpio: split disable_ms into sync and no_sync APIs The following splat has been observed on a SAMA5D27 platform using atmel_serial: BUG: sleeping function called from invalid context at kernel/irq/manage.c:738 in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 27, name: kworker/u5:0 preempt_count: 1, expected: 0 INFO: lockdep is turned off. irq event stamp: 0 hardirqs last enabled at (0): [<00000000>] 0x0 hardirqs last disabled at (0): [<c01588f0>] copy_process+0x1c4c/0x7bec softirqs last enabled at (0): [<c0158944>] copy_process+0x1ca0/0x7bec softirqs last disabled at (0): [<00000000>] 0x0 CPU: 0 UID: 0 PID: 27 Comm: kworker/u5:0 Not tainted 6.13.0-rc7+ #74 Hardware name: Atmel SAMA5 Workqueue: hci0 hci_power_on [bluetooth] Call trace: unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x44/0x70 dump_stack_lvl from __might_resched+0x38c/0x598 __might_resched from disable_irq+0x1c/0x48 disable_irq from mctrl_gpio_disable_ms+0x74/0xc0 mctrl_gpio_disable_ms from atmel_disable_ms.part.0+0x80/0x1f4 atmel_disable_ms.part.0 from atmel_set_termios+0x764/0x11e8 atmel_set_termios from uart_change_line_settings+0x15c/0x994 uart_change_line_settings from uart_set_termios+0x2b0/0x668 uart_set_termios from tty_set_termios+0x600/0x8ec tty_set_termios from ttyport_set_flow_control+0x188/0x1e0 ttyport_set_flow_control from wilc_setup+0xd0/0x524 [hci_wilc] wilc_setup [hci_wilc] from hci_dev_open_sync+0x330/0x203c [bluetooth] hci_dev_open_sync [bluetooth] from hci_dev_do_open+0x40/0xb0 [bluetooth] hci_dev_do_open [bluetooth] from hci_power_on+0x12c/0x664 [bluetooth] hci_power_on [bluetooth] from process_one_work+0x998/0x1a38 process_one_work from worker_thread+0x6e0/0xfb4 worker_thread from kthread+0x3d4/0x484 kthread from ret_from_fork+0x14/0x28 This warning is emitted when trying to toggle, at the highest level, some flow control (with serdev_device_set_flow_control) in a device driver. At the lowest level, the atmel_serial driver is using serial_mctrl_gpio lib to enable/disable the corresponding IRQs accordingly. The warning emitted by CONFIG_DEBUG_ATOMIC_SLEEP is due to disable_irq (called in mctrl_gpio_disable_ms) being possibly called in some atomic context (some tty drivers perform modem lines configuration in regions protected by port lock). Split mctrl_gpio_disable_ms into two differents APIs, a non-blocking one and a blocking one. Replace mctrl_gpio_disable_ms calls with the relevant version depending on whether the call is protected by some port lock.
high
CVE-2025-38039In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Avoid WARN_ON when configuring MQPRIO with HTB offload enabled When attempting to enable MQPRIO while HTB offload is already configured, the driver currently returns `-EINVAL` and triggers a `WARN_ON`, leading to an unnecessary call trace. Update the code to handle this case more gracefully by returning `-EOPNOTSUPP` instead, while also providing a helpful user message.
medium
CVE-2025-38038In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: Remove unnecessary driver_lock in set_boost set_boost is a per-policy function call, hence a driver wide lock is unnecessary. Also this mutex_acquire can collide with the mutex_acquire from the mode-switch path in status_store(), which can lead to a deadlock. So, remove it.
medium
CVE-2025-38037In the Linux kernel, the following vulnerability has been resolved: vxlan: Annotate FDB data races The 'used' and 'updated' fields in the FDB entry structure can be accessed concurrently by multiple threads, leading to reports such as [1]. Can be reproduced using [2]. Suppress these reports by annotating these accesses using READ_ONCE() / WRITE_ONCE(). [1] BUG: KCSAN: data-race in vxlan_xmit / vxlan_xmit write to 0xffff942604d263a8 of 8 bytes by task 286 on cpu 0: vxlan_xmit+0xb29/0x2380 dev_hard_start_xmit+0x84/0x2f0 __dev_queue_xmit+0x45a/0x1650 packet_xmit+0x100/0x150 packet_sendmsg+0x2114/0x2ac0 __sys_sendto+0x318/0x330 __x64_sys_sendto+0x76/0x90 x64_sys_call+0x14e8/0x1c00 do_syscall_64+0x9e/0x1a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f read to 0xffff942604d263a8 of 8 bytes by task 287 on cpu 2: vxlan_xmit+0xadf/0x2380 dev_hard_start_xmit+0x84/0x2f0 __dev_queue_xmit+0x45a/0x1650 packet_xmit+0x100/0x150 packet_sendmsg+0x2114/0x2ac0 __sys_sendto+0x318/0x330 __x64_sys_sendto+0x76/0x90 x64_sys_call+0x14e8/0x1c00 do_syscall_64+0x9e/0x1a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f value changed: 0x00000000fffbac6e -> 0x00000000fffbac6f Reported by Kernel Concurrency Sanitizer on: CPU: 2 UID: 0 PID: 287 Comm: mausezahn Not tainted 6.13.0-rc7-01544-gb4b270f11a02 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 [2] #!/bin/bash set +H echo whitelist > /sys/kernel/debug/kcsan echo !vxlan_xmit > /sys/kernel/debug/kcsan ip link add name vx0 up type vxlan id 10010 dstport 4789 local 192.0.2.1 bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 198.51.100.1 taskset -c 0 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q & taskset -c 2 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q &
high
CVE-2025-38036In the Linux kernel, the following vulnerability has been resolved: drm/xe/vf: Perform early GT MMIO initialization to read GMDID VFs need to communicate with the GuC to obtain the GMDID value and existing GuC functions used for that assume that the GT has it's MMIO members already setup. However, due to recent refactoring the gt->mmio is initialized later, and any attempt by the VF to use xe_mmio_read|write() from GuC functions will lead to NPD crash due to unset MMIO register address: [] xe 0000:00:02.1: [drm] Running in SR-IOV VF mode [] xe 0000:00:02.1: [drm] GT0: sending H2G MMIO 0x5507 [] BUG: unable to handle page fault for address: 0000000000190240 Since we are already tweaking the id and type of the primary GT to mimic it's a Media GT before initializing the GuC communication, we can also call xe_gt_mmio_init() to perform early setup of the gt->mmio which will make those GuC functions work again.
medium
CVE-2025-38035In the Linux kernel, the following vulnerability has been resolved: nvmet-tcp: don't restore null sk_state_change queue->state_change is set as part of nvmet_tcp_set_queue_sock(), but if the TCP connection isn't established when nvmet_tcp_set_queue_sock() is called then queue->state_change isn't set and sock->sk->sk_state_change isn't replaced. As such we don't need to restore sock->sk->sk_state_change if queue->state_change is NULL. This avoids NULL pointer dereferences such as this: [ 286.462026][ C0] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 286.462814][ C0] #PF: supervisor instruction fetch in kernel mode [ 286.463796][ C0] #PF: error_code(0x0010) - not-present page [ 286.464392][ C0] PGD 8000000140620067 P4D 8000000140620067 PUD 114201067 PMD 0 [ 286.465086][ C0] Oops: Oops: 0010 [#1] SMP KASAN PTI [ 286.465559][ C0] CPU: 0 UID: 0 PID: 1628 Comm: nvme Not tainted 6.15.0-rc2+ #11 PREEMPT(voluntary) [ 286.466393][ C0] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 [ 286.467147][ C0] RIP: 0010:0x0 [ 286.467420][ C0] Code: Unable to access opcode bytes at 0xffffffffffffffd6. [ 286.467977][ C0] RSP: 0018:ffff8883ae008580 EFLAGS: 00010246 [ 286.468425][ C0] RAX: 0000000000000000 RBX: ffff88813fd34100 RCX: ffffffffa386cc43 [ 286.469019][ C0] RDX: 1ffff11027fa68b6 RSI: 0000000000000008 RDI: ffff88813fd34100 [ 286.469545][ C0] RBP: ffff88813fd34160 R08: 0000000000000000 R09: ffffed1027fa682c [ 286.470072][ C0] R10: ffff88813fd34167 R11: 0000000000000000 R12: ffff88813fd344c3 [ 286.470585][ C0] R13: ffff88813fd34112 R14: ffff88813fd34aec R15: ffff888132cdd268 [ 286.471070][ C0] FS: 00007fe3c04c7d80(0000) GS:ffff88840743f000(0000) knlGS:0000000000000000 [ 286.471644][ C0] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 286.472543][ C0] CR2: ffffffffffffffd6 CR3: 000000012daca000 CR4: 00000000000006f0 [ 286.473500][ C0] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 286.474467][ C0] DR3: 0000000000000000 DR6: 00000000ffff07f0 DR7: 0000000000000400 [ 286.475453][ C0] Call Trace: [ 286.476102][ C0] <IRQ> [ 286.476719][ C0] tcp_fin+0x2bb/0x440 [ 286.477429][ C0] tcp_data_queue+0x190f/0x4e60 [ 286.478174][ C0] ? __build_skb_around+0x234/0x330 [ 286.478940][ C0] ? rcu_is_watching+0x11/0xb0 [ 286.479659][ C0] ? __pfx_tcp_data_queue+0x10/0x10 [ 286.480431][ C0] ? tcp_try_undo_loss+0x640/0x6c0 [ 286.481196][ C0] ? seqcount_lockdep_reader_access.constprop.0+0x82/0x90 [ 286.482046][ C0] ? kvm_clock_get_cycles+0x14/0x30 [ 286.482769][ C0] ? ktime_get+0x66/0x150 [ 286.483433][ C0] ? rcu_is_watching+0x11/0xb0 [ 286.484146][ C0] tcp_rcv_established+0x6e4/0x2050 [ 286.484857][ C0] ? rcu_is_watching+0x11/0xb0 [ 286.485523][ C0] ? ipv4_dst_check+0x160/0x2b0 [ 286.486203][ C0] ? __pfx_tcp_rcv_established+0x10/0x10 [ 286.486917][ C0] ? lock_release+0x217/0x2c0 [ 286.487595][ C0] tcp_v4_do_rcv+0x4d6/0x9b0 [ 286.488279][ C0] tcp_v4_rcv+0x2af8/0x3e30 [ 286.488904][ C0] ? raw_local_deliver+0x51b/0xad0 [ 286.489551][ C0] ? rcu_is_watching+0x11/0xb0 [ 286.490198][ C0] ? __pfx_tcp_v4_rcv+0x10/0x10 [ 286.490813][ C0] ? __pfx_raw_local_deliver+0x10/0x10 [ 286.491487][ C0] ? __pfx_nf_confirm+0x10/0x10 [nf_conntrack] [ 286.492275][ C0] ? rcu_is_watching+0x11/0xb0 [ 286.492900][ C0] ip_protocol_deliver_rcu+0x8f/0x370 [ 286.493579][ C0] ip_local_deliver_finish+0x297/0x420 [ 286.494268][ C0] ip_local_deliver+0x168/0x430 [ 286.494867][ C0] ? __pfx_ip_local_deliver+0x10/0x10 [ 286.495498][ C0] ? __pfx_ip_local_deliver_finish+0x10/0x10 [ 286.496204][ C0] ? ip_rcv_finish_core+0x19a/0x1f20 [ 286.496806][ C0] ? lock_release+0x217/0x2c0 [ 286.497414][ C0] ip_rcv+0x455/0x6e0 [ 286.497945][ C0] ? __pfx_ip_rcv+0x10/0x10 [ ---truncated---
medium
CVE-2025-38034In the Linux kernel, the following vulnerability has been resolved: btrfs: correct the order of prelim_ref arguments in btrfs__prelim_ref btrfs_prelim_ref() calls the old and new reference variables in the incorrect order. This causes a NULL pointer dereference because oldref is passed as NULL to trace_btrfs_prelim_ref_insert(). Note, trace_btrfs_prelim_ref_insert() is being called with newref as oldref (and oldref as NULL) on purpose in order to print out the values of newref. To reproduce: echo 1 > /sys/kernel/debug/tracing/events/btrfs/btrfs_prelim_ref_insert/enable Perform some writeback operations. Backtrace: BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 115949067 P4D 115949067 PUD 11594a067 PMD 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 1 UID: 0 PID: 1188 Comm: fsstress Not tainted 6.15.0-rc2-tester+ #47 PREEMPT(voluntary) 7ca2cef72d5e9c600f0c7718adb6462de8149622 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-2-gc13ff2cd-prebuilt.qemu.org 04/01/2014 RIP: 0010:trace_event_raw_event_btrfs__prelim_ref+0x72/0x130 Code: e8 43 81 9f ff 48 85 c0 74 78 4d 85 e4 0f 84 8f 00 00 00 49 8b 94 24 c0 06 00 00 48 8b 0a 48 89 48 08 48 8b 52 08 48 89 50 10 <49> 8b 55 18 48 89 50 18 49 8b 55 20 48 89 50 20 41 0f b6 55 28 88 RSP: 0018:ffffce44820077a0 EFLAGS: 00010286 RAX: ffff8c6b403f9014 RBX: ffff8c6b55825730 RCX: 304994edf9cf506b RDX: d8b11eb7f0fdb699 RSI: ffff8c6b403f9010 RDI: ffff8c6b403f9010 RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000010 R10: 00000000ffffffff R11: 0000000000000000 R12: ffff8c6b4e8fb000 R13: 0000000000000000 R14: ffffce44820077a8 R15: ffff8c6b4abd1540 FS: 00007f4dc6813740(0000) GS:ffff8c6c1d378000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000018 CR3: 000000010eb42000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> prelim_ref_insert+0x1c1/0x270 find_parent_nodes+0x12a6/0x1ee0 ? __entry_text_end+0x101f06/0x101f09 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 btrfs_is_data_extent_shared+0x167/0x640 ? fiemap_process_hole+0xd0/0x2c0 extent_fiemap+0xa5c/0xbc0 ? __entry_text_end+0x101f05/0x101f09 btrfs_fiemap+0x7e/0xd0 do_vfs_ioctl+0x425/0x9d0 __x64_sys_ioctl+0x75/0xc0
medium
CVE-2025-38033In the Linux kernel, the following vulnerability has been resolved: x86/Kconfig: make CFI_AUTO_DEFAULT depend on !RUST or Rust >= 1.88 Calling core::fmt::write() from rust code while FineIBT is enabled results in a kernel panic: [ 4614.199779] kernel BUG at arch/x86/kernel/cet.c:132! [ 4614.205343] Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 4614.211781] CPU: 2 UID: 0 PID: 6057 Comm: dmabuf_dump Tainted: G U O 6.12.17-android16-0-g6ab38c534a43 #1 9da040f27673ec3945e23b998a0f8bd64c846599 [ 4614.227832] Tainted: [U]=USER, [O]=OOT_MODULE [ 4614.241247] RIP: 0010:do_kernel_cp_fault+0xea/0xf0 ... [ 4614.398144] RIP: 0010:_RNvXs5_NtNtNtCs3o2tGsuHyou_4core3fmt3num3impyNtB9_7Display3fmt+0x0/0x20 [ 4614.407792] Code: 48 f7 df 48 0f 48 f9 48 89 f2 89 c6 5d e9 18 fd ff ff 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 41 81 ea 14 61 af 2c 74 03 0f 0b 90 <66> 0f 1f 00 55 48 89 e5 48 89 f2 48 8b 3f be 01 00 00 00 5d e9 e7 [ 4614.428775] RSP: 0018:ffffb95acfa4ba68 EFLAGS: 00010246 [ 4614.434609] RAX: 0000000000000000 RBX: 0000000000000010 RCX: 0000000000000000 [ 4614.442587] RDX: 0000000000000007 RSI: ffffb95acfa4ba70 RDI: ffffb95acfa4bc88 [ 4614.450557] RBP: ffffb95acfa4bae0 R08: ffff0a00ffffff05 R09: 0000000000000070 [ 4614.458527] R10: 0000000000000000 R11: ffffffffab67eaf0 R12: ffffb95acfa4bcc8 [ 4614.466493] R13: ffffffffac5d50f0 R14: 0000000000000000 R15: 0000000000000000 [ 4614.474473] ? __cfi__RNvXs5_NtNtNtCs3o2tGsuHyou_4core3fmt3num3impyNtB9_7Display3fmt+0x10/0x10 [ 4614.484118] ? _RNvNtCs3o2tGsuHyou_4core3fmt5write+0x1d2/0x250 This happens because core::fmt::write() calls core::fmt::rt::Argument::fmt(), which currently has CFI disabled: library/core/src/fmt/rt.rs: 171 // FIXME: Transmuting formatter in new and indirectly branching to/calling 172 // it here is an explicit CFI violation. 173 #[allow(inline_no_sanitize)] 174 #[no_sanitize(cfi, kcfi)] 175 #[inline] 176 pub(super) unsafe fn fmt(&self, f: &mut Formatter<'_>) -> Result { This causes a Control Protection exception, because FineIBT has sealed off the original function's endbr64. This makes rust currently incompatible with FineIBT. Add a Kconfig dependency that prevents FineIBT from getting turned on by default if rust is enabled. [ Rust 1.88.0 (scheduled for 2025-06-26) should have this fixed [1], and thus we relaxed the condition with Rust >= 1.88. When `objtool` lands checking for this with e.g. [2], the plan is to ideally run that in upstream Rust's CI to prevent regressions early [3], since we do not control `core`'s source code. Alice tested the Rust PR backported to an older compiler. Peter would like that Rust provides a stable `core` which can be pulled into the kernel: "Relying on that much out of tree code is 'unfortunate'". - Miguel ] [ Reduced splat. - Miguel ]
high
CVE-2025-38032In the Linux kernel, the following vulnerability has been resolved: mr: consolidate the ipmr_can_free_table() checks. Guoyu Yin reported a splat in the ipmr netns cleanup path: WARNING: CPU: 2 PID: 14564 at net/ipv4/ipmr.c:440 ipmr_free_table net/ipv4/ipmr.c:440 [inline] WARNING: CPU: 2 PID: 14564 at net/ipv4/ipmr.c:440 ipmr_rules_exit+0x135/0x1c0 net/ipv4/ipmr.c:361 Modules linked in: CPU: 2 UID: 0 PID: 14564 Comm: syz.4.838 Not tainted 6.14.0 #1 Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:ipmr_free_table net/ipv4/ipmr.c:440 [inline] RIP: 0010:ipmr_rules_exit+0x135/0x1c0 net/ipv4/ipmr.c:361 Code: ff df 48 c1 ea 03 80 3c 02 00 75 7d 48 c7 83 60 05 00 00 00 00 00 00 5b 5d 41 5c 41 5d 41 5e e9 71 67 7f 00 e8 4c 2d 8a fd 90 <0f> 0b 90 eb 93 e8 41 2d 8a fd 0f b6 2d 80 54 ea 01 31 ff 89 ee e8 RSP: 0018:ffff888109547c58 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff888108c12dc0 RCX: ffffffff83e09868 RDX: ffff8881022b3300 RSI: ffffffff83e098d4 RDI: 0000000000000005 RBP: ffff888104288000 R08: 0000000000000000 R09: ffffed10211825c9 R10: 0000000000000001 R11: ffff88801816c4a0 R12: 0000000000000001 R13: ffff888108c13320 R14: ffff888108c12dc0 R15: fffffbfff0b74058 FS: 00007f84f39316c0(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f84f3930f98 CR3: 0000000113b56000 CR4: 0000000000350ef0 Call Trace: <TASK> ipmr_net_exit_batch+0x50/0x90 net/ipv4/ipmr.c:3160 ops_exit_list+0x10c/0x160 net/core/net_namespace.c:177 setup_net+0x47d/0x8e0 net/core/net_namespace.c:394 copy_net_ns+0x25d/0x410 net/core/net_namespace.c:516 create_new_namespaces+0x3f6/0xaf0 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0xc3/0x180 kernel/nsproxy.c:228 ksys_unshare+0x78d/0x9a0 kernel/fork.c:3342 __do_sys_unshare kernel/fork.c:3413 [inline] __se_sys_unshare kernel/fork.c:3411 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:3411 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xa6/0x1a0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f84f532cc29 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f84f3931038 EFLAGS: 00000246 ORIG_RAX: 0000000000000110 RAX: ffffffffffffffda RBX: 00007f84f5615fa0 RCX: 00007f84f532cc29 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000040000400 RBP: 00007f84f53fba18 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f84f5615fa0 R15: 00007fff51c5f328 </TASK> The running kernel has CONFIG_IP_MROUTE_MULTIPLE_TABLES disabled, and the sanity check for such build is still too loose. Address the issue consolidating the relevant sanity check in a single helper regardless of the kernel configuration. Also share it between the ipv4 and ipv6 code.
high
CVE-2025-38031In the Linux kernel, the following vulnerability has been resolved: padata: do not leak refcount in reorder_work A recent patch that addressed a UAF introduced a reference count leak: the parallel_data refcount is incremented unconditionally, regardless of the return value of queue_work(). If the work item is already queued, the incremented refcount is never decremented. Fix this by checking the return value of queue_work() and decrementing the refcount when necessary. Resolves: Unreferenced object 0xffff9d9f421e3d80 (size 192): comm "cryptomgr_probe", pid 157, jiffies 4294694003 hex dump (first 32 bytes): 80 8b cf 41 9f 9d ff ff b8 97 e0 89 ff ff ff ff ...A............ d0 97 e0 89 ff ff ff ff 19 00 00 00 1f 88 23 00 ..............#. backtrace (crc 838fb36): __kmalloc_cache_noprof+0x284/0x320 padata_alloc_pd+0x20/0x1e0 padata_alloc_shell+0x3b/0xa0 0xffffffffc040a54d cryptomgr_probe+0x43/0xc0 kthread+0xf6/0x1f0 ret_from_fork+0x2f/0x50 ret_from_fork_asm+0x1a/0x30
medium
CVE-2025-38029In the Linux kernel, the following vulnerability has been resolved: kasan: avoid sleepable page allocation from atomic context apply_to_pte_range() enters the lazy MMU mode and then invokes kasan_populate_vmalloc_pte() callback on each page table walk iteration. However, the callback can go into sleep when trying to allocate a single page, e.g. if an architecutre disables preemption on lazy MMU mode enter. On s390 if make arch_enter_lazy_mmu_mode() -> preempt_enable() and arch_leave_lazy_mmu_mode() -> preempt_disable(), such crash occurs: [ 0.663336] BUG: sleeping function called from invalid context at ./include/linux/sched/mm.h:321 [ 0.663348] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 2, name: kthreadd [ 0.663358] preempt_count: 1, expected: 0 [ 0.663366] RCU nest depth: 0, expected: 0 [ 0.663375] no locks held by kthreadd/2. [ 0.663383] Preemption disabled at: [ 0.663386] [<0002f3284cbb4eda>] apply_to_pte_range+0xfa/0x4a0 [ 0.663405] CPU: 0 UID: 0 PID: 2 Comm: kthreadd Not tainted 6.15.0-rc5-gcc-kasan-00043-gd76bb1ebb558-dirty #162 PREEMPT [ 0.663408] Hardware name: IBM 3931 A01 701 (KVM/Linux) [ 0.663409] Call Trace: [ 0.663410] [<0002f3284c385f58>] dump_stack_lvl+0xe8/0x140 [ 0.663413] [<0002f3284c507b9e>] __might_resched+0x66e/0x700 [ 0.663415] [<0002f3284cc4f6c0>] __alloc_frozen_pages_noprof+0x370/0x4b0 [ 0.663419] [<0002f3284ccc73c0>] alloc_pages_mpol+0x1a0/0x4a0 [ 0.663421] [<0002f3284ccc8518>] alloc_frozen_pages_noprof+0x88/0xc0 [ 0.663424] [<0002f3284ccc8572>] alloc_pages_noprof+0x22/0x120 [ 0.663427] [<0002f3284cc341ac>] get_free_pages_noprof+0x2c/0xc0 [ 0.663429] [<0002f3284cceba70>] kasan_populate_vmalloc_pte+0x50/0x120 [ 0.663433] [<0002f3284cbb4ef8>] apply_to_pte_range+0x118/0x4a0 [ 0.663435] [<0002f3284cbc7c14>] apply_to_pmd_range+0x194/0x3e0 [ 0.663437] [<0002f3284cbc99be>] __apply_to_page_range+0x2fe/0x7a0 [ 0.663440] [<0002f3284cbc9e88>] apply_to_page_range+0x28/0x40 [ 0.663442] [<0002f3284ccebf12>] kasan_populate_vmalloc+0x82/0xa0 [ 0.663445] [<0002f3284cc1578c>] alloc_vmap_area+0x34c/0xc10 [ 0.663448] [<0002f3284cc1c2a6>] __get_vm_area_node+0x186/0x2a0 [ 0.663451] [<0002f3284cc1e696>] __vmalloc_node_range_noprof+0x116/0x310 [ 0.663454] [<0002f3284cc1d950>] __vmalloc_node_noprof+0xd0/0x110 [ 0.663457] [<0002f3284c454b88>] alloc_thread_stack_node+0xf8/0x330 [ 0.663460] [<0002f3284c458d56>] dup_task_struct+0x66/0x4d0 [ 0.663463] [<0002f3284c45be90>] copy_process+0x280/0x4b90 [ 0.663465] [<0002f3284c460940>] kernel_clone+0xd0/0x4b0 [ 0.663467] [<0002f3284c46115e>] kernel_thread+0xbe/0xe0 [ 0.663469] [<0002f3284c4e440e>] kthreadd+0x50e/0x7f0 [ 0.663472] [<0002f3284c38c04a>] __ret_from_fork+0x8a/0xf0 [ 0.663475] [<0002f3284ed57ff2>] ret_from_fork+0xa/0x38 Instead of allocating single pages per-PTE, bulk-allocate the shadow memory prior to applying kasan_populate_vmalloc_pte() callback on a page range.
medium
CVE-2025-38028In the Linux kernel, the following vulnerability has been resolved: NFS/localio: Fix a race in nfs_local_open_fh() Once the clp->cl_uuid.lock has been dropped, another CPU could come in and free the struct nfsd_file that was just added. To prevent that from happening, take the RCU read lock before dropping the spin lock.
medium