Updated CVEs

IDDescriptionSeverity
CVE-2025-47789Horilla is a free and open source Human Resource Management System (HRMS). In versions up to and including 1.3, an attacker can craft a Horilla URL that refers to an external domain. Upon clicking and logging in, the user is redirected to an external domain. This allows the redirection to any arbitrary site, including phishing or malicious domains, which can be used to impersonate Horilla and trick users. Commit 1c72404df6888bb23af73c767fdaee5e6679ebd6 fixes the issue.
medium
CVE-2025-47698An adjacent attacker without authentication can exploit this vulnerability to retrieve a set of user-privileged credentials. These credentials are present during the firmware upgrade procedure.
high
CVE-2025-47291containerd is an open-source container runtime. A bug was found in the containerd's CRI implementation where containerd, starting in version 2.0.1 and prior to version 2.0.5, doesn't put usernamespaced containers under the Kubernetes' cgroup hierarchy, therefore some Kubernetes limits are not honored. This may cause a denial of service of the Kubernetes node. This bug has been fixed in containerd 2.0.5+ and 2.1.0+. Users should update to these versions to resolve the issue. As a workaround, disable usernamespaced pods in Kubernetes temporarily.
medium
CVE-2025-47290containerd is a container runtime. A time-of-check to time-of-use (TOCTOU) vulnerability was found in containerd v2.1.0. While unpacking an image during an image pull, specially crafted container images could arbitrarily modify the host file system. The only affected version of containerd is 2.1.0. Other versions of containerd are not affected. This bug has been fixed in containerd 2.1.1. Users should update to this version to resolve the issue. As a workaround, ensure that only trusted images are used and that only trusted users have permissions to import images.
critical
CVE-2025-46720Keystone is a content management system for Node.js. Prior to version 6.5.0, `{field}.isFilterable` access control can be bypassed in `update` and `delete` mutations by adding additional unique filters. These filters can be used as an oracle to probe the existence or value of otherwise unreadable fields. Specifically, when a mutation includes a `where` clause with multiple unique filters (e.g. `id` and `email`), Keystone will attempt to match records even if filtering by the latter fields would normally be rejected by `field.isFilterable` or `list.defaultIsFilterable`. This can allow malicious actors to infer the presence of a particular field value when a filter is successful in returning a result. This affects any project relying on the default or dynamic `isFilterable` behavior (at the list or field level) to prevent external users from using the filtering of fields as a discovery mechanism. While this access control is respected during `findMany` operations, it was not completely enforced during `update` and `delete` mutations when accepting more than one unique `where` values in filters. This has no impact on projects using `isFilterable: false` or `defaultIsFilterable: false` for sensitive fields, or for those who have otherwise omitted filtering by these fields from their GraphQL schema. This issue has been patched in `@keystone-6/core` version 6.5.0. To mitigate this issue in older versions where patching is not a viable pathway, set `isFilterable: false` statically for relevant fields to prevent filtering by them earlier in the access control pipeline (that is, don't use functions); set `{field}.graphql.omit.read: true` for relevant fields, which implicitly removes filtering by these fields from the GraphQL schema; and/or deny `update` and `delete` operations for the relevant lists completely.
medium
CVE-2025-46703Improper Encoding or Escaping of Output vulnerability in Hallo Welt! GmbH BlueSpice (Extension:AtMentions) allows Cross-Site Scripting (XSS). This issue affects BlueSpice: from 5 through 5.1.1.
medium
CVE-2025-4444A security flaw has been discovered in Tor up to 0.4.7.16/0.4.8.17. Impacted is an unknown function of the component Onion Service Descriptor Handler. Performing manipulation results in resource consumption. The attack may be initiated remotely. The attack's complexity is rated as high. The exploitability is considered difficult. Upgrading to version 0.4.8.18 and 0.4.9.3-alpha is recommended to address this issue. It is recommended to upgrade the affected component.
medium
CVE-2025-43861ManageWiki is a MediaWiki extension allowing users to manage wikis. Prior to commit 2f177dc, ManageWiki is vulnerable to reflected or stored XSS in the review dialog. A logged-in attacker must change a form field to include a malicious payload. If that same user then opens the "Review Changes" dialog, the payload will be rendered and executed in the context of their own session. This issue has been patched in commit 2f177dc.
medium
CVE-2025-43853The WebAssembly Micro Runtime's (WAMR) iwasm package is the executable binary built with WAMR VMcore which supports WebAssembly System Interface (WASI) and command line interface. Anyone running WAMR up to and including version 2.2.0 or WAMR built with libc-uvwasi on Windows is affected by a symlink following vulnerability. On WAMR running in Windows, creating a symlink pointing outside of the preopened directory and subsequently opening it with create flag will create a file on host outside of the sandbox. If the symlink points to an existing host file, it's also possible to open it and read its content. Version 2.3.0 fixes the issue.
high
CVE-2025-43809Cross-Site Request Forgery (CSRF) vulnerability in the server (license) registration page in Liferay Portal 7.4.0 through 7.4.3.111, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.7, 2023.Q3.1 through 2023.Q3.9, 7.4 GA through update 92, and older unsupported versions allows remote attackers to register a server license via the 'orderUuid' parameter.
medium
CVE-2025-43808The Commerce component in Liferay Portal 7.3.0 through 7.4.3.112, and Liferay DXP 2023.Q4.0 through 2023.Q4.8, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and 7.3 service pack 3 through update 35 saves virtual products uploaded to Documents and Media with guest view permission, which allows remote attackers to access and download virtual products for free via a crafted URL.
medium
CVE-2025-43803Insecure direct object reference (IDOR) vulnerability in the Contacts Center widget in Liferay Portal 7.4.0 through 7.4.3.119, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.6, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and older unsupported versions allows remote attackers to view contact information, including the contact’s name and email address, via the _com_liferay_contacts_web_portlet_ContactsCenterPortlet_entryId parameter.
medium
CVE-2025-39866In the Linux kernel, the following vulnerability has been resolved: fs: writeback: fix use-after-free in __mark_inode_dirty() An use-after-free issue occurred when __mark_inode_dirty() get the bdi_writeback that was in the progress of switching. CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1 ...... pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __mark_inode_dirty+0x124/0x418 lr : __mark_inode_dirty+0x118/0x418 sp : ffffffc08c9dbbc0 ........ Call trace: __mark_inode_dirty+0x124/0x418 generic_update_time+0x4c/0x60 file_modified+0xcc/0xd0 ext4_buffered_write_iter+0x58/0x124 ext4_file_write_iter+0x54/0x704 vfs_write+0x1c0/0x308 ksys_write+0x74/0x10c __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x40/0xe4 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x194/0x198 Root cause is: systemd-random-seed kworker ---------------------------------------------------------------------- ___mark_inode_dirty inode_switch_wbs_work_fn spin_lock(&inode->i_lock); inode_attach_wb locked_inode_to_wb_and_lock_list get inode->i_wb spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock) spin_lock(&inode->i_lock) inode_io_list_move_locked spin_unlock(&wb->list_lock) spin_unlock(&inode->i_lock) spin_lock(&old_wb->list_lock) inode_do_switch_wbs spin_lock(&inode->i_lock) inode->i_wb = new_wb spin_unlock(&inode->i_lock) spin_unlock(&old_wb->list_lock) wb_put_many(old_wb, nr_switched) cgwb_release old wb released wb_wakeup_delayed() accesses wb, then trigger the use-after-free issue Fix this race condition by holding inode spinlock until wb_wakeup_delayed() finished.
high
CVE-2025-39865In the Linux kernel, the following vulnerability has been resolved: tee: fix NULL pointer dereference in tee_shm_put tee_shm_put have NULL pointer dereference: __optee_disable_shm_cache --> shm = reg_pair_to_ptr(...);//shm maybe return NULL tee_shm_free(shm); --> tee_shm_put(shm);//crash Add check in tee_shm_put to fix it. panic log: Unable to handle kernel paging request at virtual address 0000000000100cca Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000 [0000000000100cca] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ---- 6.6.0-39-generic #38 Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07 Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0 10/26/2022 pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : tee_shm_put+0x24/0x188 lr : tee_shm_free+0x14/0x28 sp : ffff001f98f9faf0 x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000 x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048 x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88 x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003 x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101 x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca Call trace: tee_shm_put+0x24/0x188 tee_shm_free+0x14/0x28 __optee_disable_shm_cache+0xa8/0x108 optee_shutdown+0x28/0x38 platform_shutdown+0x28/0x40 device_shutdown+0x144/0x2b0 kernel_power_off+0x3c/0x80 hibernate+0x35c/0x388 state_store+0x64/0x80 kobj_attr_store+0x14/0x28 sysfs_kf_write+0x48/0x60 kernfs_fop_write_iter+0x128/0x1c0 vfs_write+0x270/0x370 ksys_write+0x6c/0x100 __arm64_sys_write+0x20/0x30 invoke_syscall+0x4c/0x120 el0_svc_common.constprop.0+0x44/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x24/0x88 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x14c/0x15
medium
CVE-2025-39864In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: fix use-after-free in cmp_bss() Following bss_free() quirk introduced in commit 776b3580178f ("cfg80211: track hidden SSID networks properly"), adjust cfg80211_update_known_bss() to free the last beacon frame elements only if they're not shared via the corresponding 'hidden_beacon_bss' pointer.
high
CVE-2025-39863In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work The brcmf_btcoex_detach() only shuts down the btcoex timer, if the flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which runs as timer handler, sets timer_on to false. This creates critical race conditions: 1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc() is executing, it may observe timer_on as false and skip the call to timer_shutdown_sync(). 2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info worker after the cancel_work_sync() has been executed, resulting in use-after-free bugs. The use-after-free bugs occur in two distinct scenarios, depending on the timing of when the brcmf_btcoex_info struct is freed relative to the execution of its worker thread. Scenario 1: Freed before the worker is scheduled The brcmf_btcoex_info is deallocated before the worker is scheduled. A race condition can occur when schedule_work(&bt_local->work) is called after the target memory has been freed. The sequence of events is detailed below: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | kfree(cfg->btcoex); // FREE | | schedule_work(&bt_local->work); // USE Scenario 2: Freed after the worker is scheduled The brcmf_btcoex_info is freed after the worker has been scheduled but before or during its execution. In this case, statements within the brcmf_btcoex_handler() — such as the container_of macro and subsequent dereferences of the brcmf_btcoex_info object will cause a use-after-free access. The following timeline illustrates this scenario: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | schedule_work(); // Reschedule | kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker /* | btci = container_of(....); // USE The kfree() above could | ... also occur at any point | btci-> // USE during the worker's execution| */ | To resolve the race conditions, drop the conditional check and call timer_shutdown_sync() directly. It can deactivate the timer reliably, regardless of its current state. Once stopped, the timer_on state is then set to false.
high
CVE-2025-39862In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7915: fix list corruption after hardware restart Since stations are recreated from scratch, all lists that wcids are added to must be cleared before calling ieee80211_restart_hw. Set wcid->sta = 0 for each wcid entry in order to ensure that they are not added again before they are ready.
high
CVE-2025-39861In the Linux kernel, the following vulnerability has been resolved: Bluetooth: vhci: Prevent use-after-free by removing debugfs files early Move the creation of debugfs files into a dedicated function, and ensure they are explicitly removed during vhci_release(), before associated data structures are freed. Previously, debugfs files such as "force_suspend", "force_wakeup", and others were created under hdev->debugfs but not removed in vhci_release(). Since vhci_release() frees the backing vhci_data structure, any access to these files after release would result in use-after-free errors. Although hdev->debugfs is later freed in hci_release_dev(), user can access files after vhci_data is freed but before hdev->debugfs is released.
high
CVE-2025-39860In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix use-after-free in l2cap_sock_cleanup_listen() syzbot reported the splat below without a repro. In the splat, a single thread calling bt_accept_dequeue() freed sk and touched it after that. The root cause would be the racy l2cap_sock_cleanup_listen() call added by the cited commit. bt_accept_dequeue() is called under lock_sock() except for l2cap_sock_release(). Two threads could see the same socket during the list iteration in bt_accept_dequeue(): CPU1 CPU2 (close()) ---- ---- sock_hold(sk) sock_hold(sk); lock_sock(sk) <-- block close() sock_put(sk) bt_accept_unlink(sk) sock_put(sk) <-- refcnt by bt_accept_enqueue() release_sock(sk) lock_sock(sk) sock_put(sk) bt_accept_unlink(sk) sock_put(sk) <-- last refcnt bt_accept_unlink(sk) <-- UAF Depending on the timing, the other thread could show up in the "Freed by task" part. Let's call l2cap_sock_cleanup_listen() under lock_sock() in l2cap_sock_release(). [0]: BUG: KASAN: slab-use-after-free in debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline] BUG: KASAN: slab-use-after-free in do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115 Read of size 4 at addr ffff88803b7eb1c4 by task syz.5.3276/16995 CPU: 3 UID: 0 PID: 16995 Comm: syz.5.3276 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline] do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115 spin_lock_bh include/linux/spinlock.h:356 [inline] release_sock+0x21/0x220 net/core/sock.c:3746 bt_accept_dequeue+0x505/0x600 net/bluetooth/af_bluetooth.c:312 l2cap_sock_cleanup_listen+0x5c/0x2a0 net/bluetooth/l2cap_sock.c:1451 l2cap_sock_release+0x5c/0x210 net/bluetooth/l2cap_sock.c:1425 __sock_release+0xb3/0x270 net/socket.c:649 sock_close+0x1c/0x30 net/socket.c:1439 __fput+0x3ff/0xb70 fs/file_table.c:468 task_work_run+0x14d/0x240 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x3f6/0x4c0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f2accf8ebe9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffdb6cb1378 EFLAGS: 00000246 ORIG_RAX: 00000000000001b4 RAX: 0000000000000000 RBX: 00000000000426fb RCX: 00007f2accf8ebe9 RDX: 0000000000000000 RSI: 000000000000001e RDI: 0000000000000003 RBP: 00007f2acd1b7da0 R08: 0000000000000001 R09: 00000012b6cb166f R10: 0000001b30e20000 R11: 0000000000000246 R12: 00007f2acd1b609c R13: 00007f2acd1b6090 R14: ffffffffffffffff R15: 00007ffdb6cb1490 </TASK> Allocated by task 5326: kasan_save_stack+0x33/0x60 mm/kasan/common.c:47 kasan_save_track+0x14/0x30 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:388 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:405 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4365 [inline] __kmalloc_nopro ---truncated---
high
CVE-2025-39859In the Linux kernel, the following vulnerability has been resolved: ptp: ocp: fix use-after-free bugs causing by ptp_ocp_watchdog The ptp_ocp_detach() only shuts down the watchdog timer if it is pending. However, if the timer handler is already running, the timer_delete_sync() is not called. This leads to race conditions where the devlink that contains the ptp_ocp is deallocated while the timer handler is still accessing it, resulting in use-after-free bugs. The following details one of the race scenarios. (thread 1) | (thread 2) ptp_ocp_remove() | ptp_ocp_detach() | ptp_ocp_watchdog() if (timer_pending(&bp->watchdog))| bp = timer_container_of() timer_delete_sync() | | devlink_free(devlink) //free | | bp-> //use Resolve this by unconditionally calling timer_delete_sync() to ensure the timer is reliably deactivated, preventing any access after free.
high
CVE-2025-39858In the Linux kernel, the following vulnerability has been resolved: eth: mlx4: Fix IS_ERR() vs NULL check bug in mlx4_en_create_rx_ring Replace NULL check with IS_ERR() check after calling page_pool_create() since this function returns error pointers (ERR_PTR). Using NULL check could lead to invalid pointer dereference.
medium
CVE-2025-39857In the Linux kernel, the following vulnerability has been resolved: net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync() BUG: kernel NULL pointer dereference, address: 00000000000002ec PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP PTI CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Workqueue: smc_hs_wq smc_listen_work [smc] RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc] ... Call Trace: <TASK> smcr_buf_map_link+0x211/0x2a0 [smc] __smc_buf_create+0x522/0x970 [smc] smc_buf_create+0x3a/0x110 [smc] smc_find_rdma_v2_device_serv+0x18f/0x240 [smc] ? smc_vlan_by_tcpsk+0x7e/0xe0 [smc] smc_listen_find_device+0x1dd/0x2b0 [smc] smc_listen_work+0x30f/0x580 [smc] process_one_work+0x18c/0x340 worker_thread+0x242/0x360 kthread+0xe7/0x220 ret_from_fork+0x13a/0x160 ret_from_fork_asm+0x1a/0x30 </TASK> If the software RoCE device is used, ibdev->dma_device is a null pointer. As a result, the problem occurs. Null pointer detection is added to prevent problems.
medium
CVE-2025-39856In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw-nuss: Fix null pointer dereference for ndev In the TX completion packet stage of TI SoCs with CPSW2G instance, which has single external ethernet port, ndev is accessed without being initialized if no TX packets have been processed. It results into null pointer dereference, causing kernel to crash. Fix this by having a check on the number of TX packets which have been processed.
medium
CVE-2025-39855In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL access of tx->in_use in ice_ptp_ts_irq The E810 device has support for a "low latency" firmware interface to access and read the Tx timestamps. This interface does not use the standard Tx timestamp logic, due to the latency overhead of proxying sideband command requests over the firmware AdminQ. The logic still makes use of the Tx timestamp tracking structure, ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx timestamps complete. Unfortunately, the ice_ptp_ts_irq() function does not check if the tracker is initialized before its first access. This results in NULL dereference or use-after-free bugs similar to the following: [245977.278756] BUG: kernel NULL pointer dereference, address: 0000000000000000 [245977.278774] RIP: 0010:_find_first_bit+0x19/0x40 [245977.278796] Call Trace: [245977.278809] ? ice_misc_intr+0x364/0x380 [ice] This can occur if a Tx timestamp interrupt races with the driver reset logic. Fix this by only checking the in_use bitmap (and other fields) if the tracker is marked as initialized. The reset flow will clear the init field under lock before it tears the tracker down, thus preventing any use-after-free or NULL access.
medium
CVE-2025-39854In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL access of tx->in_use in ice_ll_ts_intr Recent versions of the E810 firmware have support for an extra interrupt to handle report of the "low latency" Tx timestamps coming from the specialized low latency firmware interface. Instead of polling the registers, software can wait until the low latency interrupt is fired. This logic makes use of the Tx timestamp tracking structure, ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx timestamps complete. Unfortunately, the ice_ll_ts_intr() function does not check if the tracker is initialized before its first access. This results in NULL dereference or use-after-free bugs similar to the issues fixed in the ice_ptp_ts_irq() function. Fix this by only checking the in_use bitmap (and other fields) if the tracker is marked as initialized. The reset flow will clear the init field under lock before it tears the tracker down, thus preventing any use-after-free or NULL access.
medium
CVE-2025-39853In the Linux kernel, the following vulnerability has been resolved: i40e: Fix potential invalid access when MAC list is empty list_first_entry() never returns NULL - if the list is empty, it still returns a pointer to an invalid object, leading to potential invalid memory access when dereferenced. Fix this by using list_first_entry_or_null instead of list_first_entry.
medium
CVE-2025-39852In the Linux kernel, the following vulnerability has been resolved: net/tcp: Fix socket memory leak in TCP-AO failure handling for IPv6 When tcp_ao_copy_all_matching() fails in tcp_v6_syn_recv_sock() it just exits the function. This ends up causing a memory-leak: unreferenced object 0xffff0000281a8200 (size 2496): comm "softirq", pid 0, jiffies 4295174684 hex dump (first 32 bytes): 7f 00 00 06 7f 00 00 06 00 00 00 00 cb a8 88 13 ................ 0a 00 03 61 00 00 00 00 00 00 00 00 00 00 00 00 ...a............ backtrace (crc 5ebdbe15): kmemleak_alloc+0x44/0xe0 kmem_cache_alloc_noprof+0x248/0x470 sk_prot_alloc+0x48/0x120 sk_clone_lock+0x38/0x3b0 inet_csk_clone_lock+0x34/0x150 tcp_create_openreq_child+0x3c/0x4a8 tcp_v6_syn_recv_sock+0x1c0/0x620 tcp_check_req+0x588/0x790 tcp_v6_rcv+0x5d0/0xc18 ip6_protocol_deliver_rcu+0x2d8/0x4c0 ip6_input_finish+0x74/0x148 ip6_input+0x50/0x118 ip6_sublist_rcv+0x2fc/0x3b0 ipv6_list_rcv+0x114/0x170 __netif_receive_skb_list_core+0x16c/0x200 netif_receive_skb_list_internal+0x1f0/0x2d0 This is because in tcp_v6_syn_recv_sock (and the IPv4 counterpart), when exiting upon error, inet_csk_prepare_forced_close() and tcp_done() need to be called. They make sure the newsk will end up being correctly free'd. tcp_v4_syn_recv_sock() makes this very clear by having the put_and_exit label that takes care of things. So, this patch here makes sure tcp_v4_syn_recv_sock and tcp_v6_syn_recv_sock have similar error-handling and thus fixes the leak for TCP-AO.
medium
CVE-2025-39851In the Linux kernel, the following vulnerability has been resolved: vxlan: Fix NPD when refreshing an FDB entry with a nexthop object VXLAN FDB entries can point to either a remote destination or an FDB nexthop group. The latter is usually used in EVPN deployments where learning is disabled. However, when learning is enabled, an incoming packet might try to refresh an FDB entry that points to an FDB nexthop group and therefore does not have a remote. Such packets should be dropped, but they are only dropped after dereferencing the non-existent remote, resulting in a NPD [1] which can be reproduced using [2]. Fix by dropping such packets earlier. Remove the misleading comment from first_remote_rcu(). [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 [...] CPU: 13 UID: 0 PID: 361 Comm: mausezahn Not tainted 6.17.0-rc1-virtme-g9f6b606b6b37 #1 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014 RIP: 0010:vxlan_snoop+0x98/0x1e0 [...] Call Trace: <TASK> vxlan_encap_bypass+0x209/0x240 encap_bypass_if_local+0xb1/0x100 vxlan_xmit_one+0x1375/0x17e0 vxlan_xmit+0x6b4/0x15f0 dev_hard_start_xmit+0x5d/0x1c0 __dev_queue_xmit+0x246/0xfd0 packet_sendmsg+0x113a/0x1850 __sock_sendmsg+0x38/0x70 __sys_sendto+0x126/0x180 __x64_sys_sendto+0x24/0x30 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] #!/bin/bash ip address add 192.0.2.1/32 dev lo ip address add 192.0.2.2/32 dev lo ip nexthop add id 1 via 192.0.2.3 fdb ip nexthop add id 10 group 1 fdb ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 12345 localbypass ip link add name vx1 up type vxlan id 10020 local 192.0.2.2 dstport 54321 learning bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 192.0.2.2 port 54321 vni 10020 bridge fdb add 00:aa:bb:cc:dd:ee dev vx1 self static nhid 10 mausezahn vx0 -a 00:aa:bb:cc:dd:ee -b 00:11:22:33:44:55 -c 1 -q
medium
CVE-2025-39850In the Linux kernel, the following vulnerability has been resolved: vxlan: Fix NPD in {arp,neigh}_reduce() when using nexthop objects When the "proxy" option is enabled on a VXLAN device, the device will suppress ARP requests and IPv6 Neighbor Solicitation messages if it is able to reply on behalf of the remote host. That is, if a matching and valid neighbor entry is configured on the VXLAN device whose MAC address is not behind the "any" remote (0.0.0.0 / ::). The code currently assumes that the FDB entry for the neighbor's MAC address points to a valid remote destination, but this is incorrect if the entry is associated with an FDB nexthop group. This can result in a NPD [1][3] which can be reproduced using [2][4]. Fix by checking that the remote destination exists before dereferencing it. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 [...] CPU: 4 UID: 0 PID: 365 Comm: arping Not tainted 6.17.0-rc2-virtme-g2a89cb21162c #2 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014 RIP: 0010:vxlan_xmit+0xb58/0x15f0 [...] Call Trace: <TASK> dev_hard_start_xmit+0x5d/0x1c0 __dev_queue_xmit+0x246/0xfd0 packet_sendmsg+0x113a/0x1850 __sock_sendmsg+0x38/0x70 __sys_sendto+0x126/0x180 __x64_sys_sendto+0x24/0x30 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] #!/bin/bash ip address add 192.0.2.1/32 dev lo ip nexthop add id 1 via 192.0.2.2 fdb ip nexthop add id 10 group 1 fdb ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 4789 proxy ip neigh add 192.0.2.3 lladdr 00:11:22:33:44:55 nud perm dev vx0 bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10 arping -b -c 1 -s 192.0.2.1 -I vx0 192.0.2.3 [3] BUG: kernel NULL pointer dereference, address: 0000000000000000 [...] CPU: 13 UID: 0 PID: 372 Comm: ndisc6 Not tainted 6.17.0-rc2-virtmne-g6ee90cb26014 #3 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1v996), BIOS 1.17.0-4.fc41 04/01/2x014 RIP: 0010:vxlan_xmit+0x803/0x1600 [...] Call Trace: <TASK> dev_hard_start_xmit+0x5d/0x1c0 __dev_queue_xmit+0x246/0xfd0 ip6_finish_output2+0x210/0x6c0 ip6_finish_output+0x1af/0x2b0 ip6_mr_output+0x92/0x3e0 ip6_send_skb+0x30/0x90 rawv6_sendmsg+0xe6e/0x12e0 __sock_sendmsg+0x38/0x70 __sys_sendto+0x126/0x180 __x64_sys_sendto+0x24/0x30 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f383422ec77 [4] #!/bin/bash ip address add 2001:db8:1::1/128 dev lo ip nexthop add id 1 via 2001:db8:1::1 fdb ip nexthop add id 10 group 1 fdb ip link add name vx0 up type vxlan id 10010 local 2001:db8:1::1 dstport 4789 proxy ip neigh add 2001:db8:1::3 lladdr 00:11:22:33:44:55 nud perm dev vx0 bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10 ndisc6 -r 1 -s 2001:db8:1::1 -w 1 2001:db8:1::3 vx0
medium
CVE-2025-39849In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: sme: cap SSID length in __cfg80211_connect_result() If the ssid->datalen is more than IEEE80211_MAX_SSID_LEN (32) it would lead to memory corruption so add some bounds checking.
high
CVE-2025-39848In the Linux kernel, the following vulnerability has been resolved: ax25: properly unshare skbs in ax25_kiss_rcv() Bernard Pidoux reported a regression apparently caused by commit c353e8983e0d ("net: introduce per netns packet chains"). skb->dev becomes NULL and we crash in __netif_receive_skb_core(). Before above commit, different kind of bugs or corruptions could happen without a major crash. But the root cause is that ax25_kiss_rcv() can queue/mangle input skb without checking if this skb is shared or not. Many thanks to Bernard Pidoux for his help, diagnosis and tests. We had a similar issue years ago fixed with commit 7aaed57c5c28 ("phonet: properly unshare skbs in phonet_rcv()").
medium
CVE-2025-39847In the Linux kernel, the following vulnerability has been resolved: ppp: fix memory leak in pad_compress_skb If alloc_skb() fails in pad_compress_skb(), it returns NULL without releasing the old skb. The caller does: skb = pad_compress_skb(ppp, skb); if (!skb) goto drop; drop: kfree_skb(skb); When pad_compress_skb() returns NULL, the reference to the old skb is lost and kfree_skb(skb) ends up doing nothing, leading to a memory leak. Align pad_compress_skb() semantics with realloc(): only free the old skb if allocation and compression succeed. At the call site, use the new_skb variable so the original skb is not lost when pad_compress_skb() fails.
medium
CVE-2025-39846In the Linux kernel, the following vulnerability has been resolved: pcmcia: Fix a NULL pointer dereference in __iodyn_find_io_region() In __iodyn_find_io_region(), pcmcia_make_resource() is assigned to res and used in pci_bus_alloc_resource(). There is a dereference of res in pci_bus_alloc_resource(), which could lead to a NULL pointer dereference on failure of pcmcia_make_resource(). Fix this bug by adding a check of res.
medium
CVE-2025-39845In the Linux kernel, the following vulnerability has been resolved: x86/mm/64: define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() Define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() to ensure page tables are properly synchronized when calling p*d_populate_kernel(). For 5-level paging, synchronization is performed via pgd_populate_kernel(). In 4-level paging, pgd_populate() is a no-op, so synchronization is instead performed at the P4D level via p4d_populate_kernel(). This fixes intermittent boot failures on systems using 4-level paging and a large amount of persistent memory: BUG: unable to handle page fault for address: ffffe70000000034 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] SMP NOPTI RIP: 0010:__init_single_page+0x9/0x6d Call Trace: <TASK> __init_zone_device_page+0x17/0x5d memmap_init_zone_device+0x154/0x1bb pagemap_range+0x2e0/0x40f memremap_pages+0x10b/0x2f0 devm_memremap_pages+0x1e/0x60 dev_dax_probe+0xce/0x2ec [device_dax] dax_bus_probe+0x6d/0xc9 [... snip ...] </TASK> It also fixes a crash in vmemmap_set_pmd() caused by accessing vmemmap before sync_global_pgds() [1]: BUG: unable to handle page fault for address: ffffeb3ff1200000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP NOPTI Tainted: [W]=WARN RIP: 0010:vmemmap_set_pmd+0xff/0x230 <TASK> vmemmap_populate_hugepages+0x176/0x180 vmemmap_populate+0x34/0x80 __populate_section_memmap+0x41/0x90 sparse_add_section+0x121/0x3e0 __add_pages+0xba/0x150 add_pages+0x1d/0x70 memremap_pages+0x3dc/0x810 devm_memremap_pages+0x1c/0x60 xe_devm_add+0x8b/0x100 [xe] xe_tile_init_noalloc+0x6a/0x70 [xe] xe_device_probe+0x48c/0x740 [xe] [... snip ...]
high
CVE-2025-39844In the Linux kernel, the following vulnerability has been resolved: mm: move page table sync declarations to linux/pgtable.h During our internal testing, we started observing intermittent boot failures when the machine uses 4-level paging and has a large amount of persistent memory: BUG: unable to handle page fault for address: ffffe70000000034 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] SMP NOPTI RIP: 0010:__init_single_page+0x9/0x6d Call Trace: <TASK> __init_zone_device_page+0x17/0x5d memmap_init_zone_device+0x154/0x1bb pagemap_range+0x2e0/0x40f memremap_pages+0x10b/0x2f0 devm_memremap_pages+0x1e/0x60 dev_dax_probe+0xce/0x2ec [device_dax] dax_bus_probe+0x6d/0xc9 [... snip ...] </TASK> It turns out that the kernel panics while initializing vmemmap (struct page array) when the vmemmap region spans two PGD entries, because the new PGD entry is only installed in init_mm.pgd, but not in the page tables of other tasks. And looking at __populate_section_memmap(): if (vmemmap_can_optimize(altmap, pgmap)) // does not sync top level page tables r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); else // sync top level page tables in x86 r = vmemmap_populate(start, end, nid, altmap); In the normal path, vmemmap_populate() in arch/x86/mm/init_64.c synchronizes the top level page table (See commit 9b861528a801 ("x86-64, mem: Update all PGDs for direct mapping and vmemmap mapping changes")) so that all tasks in the system can see the new vmemmap area. However, when vmemmap_can_optimize() returns true, the optimized path skips synchronization of top-level page tables. This is because vmemmap_populate_compound_pages() is implemented in core MM code, which does not handle synchronization of the top-level page tables. Instead, the core MM has historically relied on each architecture to perform this synchronization manually. We're not the first party to encounter a crash caused by not-sync'd top level page tables: earlier this year, Gwan-gyeong Mun attempted to address the issue [1] [2] after hitting a kernel panic when x86 code accessed the vmemmap area before the corresponding top-level entries were synced. At that time, the issue was believed to be triggered only when struct page was enlarged for debugging purposes, and the patch did not get further updates. It turns out that current approach of relying on each arch to handle the page table sync manually is fragile because 1) it's easy to forget to sync the top level page table, and 2) it's also easy to overlook that the kernel should not access the vmemmap and direct mapping areas before the sync. # The solution: Make page table sync more code robust and harder to miss To address this, Dave Hansen suggested [3] [4] introducing {pgd,p4d}_populate_kernel() for updating kernel portion of the page tables and allow each architecture to explicitly perform synchronization when installing top-level entries. With this approach, we no longer need to worry about missing the sync step, reducing the risk of future regressions. The new interface reuses existing ARCH_PAGE_TABLE_SYNC_MASK, PGTBL_P*D_MODIFIED and arch_sync_kernel_mappings() facility used by vmalloc and ioremap to synchronize page tables. pgd_populate_kernel() looks like this: static inline void pgd_populate_kernel(unsigned long addr, pgd_t *pgd, p4d_t *p4d) { pgd_populate(&init_mm, pgd, p4d); if (ARCH_PAGE_TABLE_SYNC_MASK & PGTBL_PGD_MODIFIED) arch_sync_kernel_mappings(addr, addr); } It is worth noting that vmalloc() and apply_to_range() carefully synchronizes page tables by calling p*d_alloc_track() and arch_sync_kernel_mappings(), and thus they are not affected by ---truncated---
high
CVE-2025-39843In the Linux kernel, the following vulnerability has been resolved: mm: slub: avoid wake up kswapd in set_track_prepare set_track_prepare() can incur lock recursion. The issue is that it is called from hrtimer_start_range_ns holding the per_cpu(hrtimer_bases)[n].lock, but when enabled CONFIG_DEBUG_OBJECTS_TIMERS, may wake up kswapd in set_track_prepare, and try to hold the per_cpu(hrtimer_bases)[n].lock. Avoid deadlock caused by implicitly waking up kswapd by passing in allocation flags, which do not contain __GFP_KSWAPD_RECLAIM in the debug_objects_fill_pool() case. Inside stack depot they are processed by gfp_nested_mask(). Since ___slab_alloc() has preemption disabled, we mask out __GFP_DIRECT_RECLAIM from the flags there. The oops looks something like: BUG: spinlock recursion on CPU#3, swapper/3/0 lock: 0xffffff8a4bf29c80, .magic: dead4ead, .owner: swapper/3/0, .owner_cpu: 3 Hardware name: Qualcomm Technologies, Inc. Popsicle based on SM8850 (DT) Call trace: spin_bug+0x0 _raw_spin_lock_irqsave+0x80 hrtimer_try_to_cancel+0x94 task_contending+0x10c enqueue_dl_entity+0x2a4 dl_server_start+0x74 enqueue_task_fair+0x568 enqueue_task+0xac do_activate_task+0x14c ttwu_do_activate+0xcc try_to_wake_up+0x6c8 default_wake_function+0x20 autoremove_wake_function+0x1c __wake_up+0xac wakeup_kswapd+0x19c wake_all_kswapds+0x78 __alloc_pages_slowpath+0x1ac __alloc_pages_noprof+0x298 stack_depot_save_flags+0x6b0 stack_depot_save+0x14 set_track_prepare+0x5c ___slab_alloc+0xccc __kmalloc_cache_noprof+0x470 __set_page_owner+0x2bc post_alloc_hook[jt]+0x1b8 prep_new_page+0x28 get_page_from_freelist+0x1edc __alloc_pages_noprof+0x13c alloc_slab_page+0x244 allocate_slab+0x7c ___slab_alloc+0x8e8 kmem_cache_alloc_noprof+0x450 debug_objects_fill_pool+0x22c debug_object_activate+0x40 enqueue_hrtimer[jt]+0xdc hrtimer_start_range_ns+0x5f8 ...
medium
CVE-2025-39842In the Linux kernel, the following vulnerability has been resolved: ocfs2: prevent release journal inode after journal shutdown Before calling ocfs2_delete_osb(), ocfs2_journal_shutdown() has already been executed in ocfs2_dismount_volume(), so osb->journal must be NULL. Therefore, the following calltrace will inevitably fail when it reaches jbd2_journal_release_jbd_inode(). ocfs2_dismount_volume()-> ocfs2_delete_osb()-> ocfs2_free_slot_info()-> __ocfs2_free_slot_info()-> evict()-> ocfs2_evict_inode()-> ocfs2_clear_inode()-> jbd2_journal_release_jbd_inode(osb->journal->j_journal, Adding osb->journal checks will prevent null-ptr-deref during the above execution path.
high
CVE-2025-39841In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix buffer free/clear order in deferred receive path Fix a use-after-free window by correcting the buffer release sequence in the deferred receive path. The code freed the RQ buffer first and only then cleared the context pointer under the lock. Concurrent paths (e.g., ABTS and the repost path) also inspect and release the same pointer under the lock, so the old order could lead to double-free/UAF. Note that the repost path already uses the correct pattern: detach the pointer under the lock, then free it after dropping the lock. The deferred path should do the same.
high
CVE-2025-39840In the Linux kernel, the following vulnerability has been resolved: audit: fix out-of-bounds read in audit_compare_dname_path() When a watch on dir=/ is combined with an fsnotify event for a single-character name directly under / (e.g., creating /a), an out-of-bounds read can occur in audit_compare_dname_path(). The helper parent_len() returns 1 for "/". In audit_compare_dname_path(), when parentlen equals the full path length (1), the code sets p = path + 1 and pathlen = 1 - 1 = 0. The subsequent loop then dereferences p[pathlen - 1] (i.e., p[-1]), causing an out-of-bounds read. Fix this by adding a pathlen > 0 check to the while loop condition to prevent the out-of-bounds access. [PM: subject tweak, sign-off email fixes]
high
CVE-2025-39839In the Linux kernel, the following vulnerability has been resolved: batman-adv: fix OOB read/write in network-coding decode batadv_nc_skb_decode_packet() trusts coded_len and checks only against skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing payload headroom, and the source skb length is not verified, allowing an out-of-bounds read and a small out-of-bounds write. Validate that coded_len fits within the payload area of both destination and source sk_buffs before XORing.
high
CVE-2025-39838In the Linux kernel, the following vulnerability has been resolved: cifs: prevent NULL pointer dereference in UTF16 conversion There can be a NULL pointer dereference bug here. NULL is passed to __cifs_sfu_make_node without checks, which passes it unchecked to cifs_strndup_to_utf16, which in turn passes it to cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash. This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and returns NULL early to prevent dereferencing NULL pointer. Found by Linux Verification Center (linuxtesting.org) with SVACE
medium
CVE-2025-39837In the Linux kernel, the following vulnerability has been resolved: platform/x86: asus-wmi: Fix racy registrations asus_wmi_register_driver() may be called from multiple drivers concurrently, which can lead to the racy list operations, eventually corrupting the memory and hitting Oops on some ASUS machines. Also, the error handling is missing, and it forgot to unregister ACPI lps0 dev ops in the error case. This patch covers those issues by introducing a simple mutex at acpi_wmi_register_driver() & *_unregister_driver, and adding the proper call of asus_s2idle_check_unregister() in the error path.
medium
CVE-2025-36248IBM Copy Services Manager 6.3.13 is vulnerable to cross-site scripting. This vulnerability allows an authenticated user to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session.
medium
CVE-2025-36146IBM Lakehouse (watsonx.data 2.2) could allow an authenticated user to obtain sensitive server component version information which could aid in further attacks against the system.
medium
CVE-2025-36143IBM Lakehouse (watsonx.data 2.2) could allow an authenticated privileged user to execute arbitrary commands on the system due to improper validation of user supplied input.
medium
CVE-2025-36139IBM Lakehouse (watsonx.data 2.2) is vulnerable to stored cross-site scripting. This vulnerability allows a privileged user to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session.
medium
CVE-2025-34206Vasion Print (formerly PrinterLogic) Virtual Appliance Host and Application (VA and SaaS deployments) mount host configuration and secret material under /var/www/efs_storage into many Docker containers with overly-permissive filesystem permissions. Files such as secrets.env, GPG-encrypted blobs in .secrets, MySQL client keys, and application session files are accessible from multiple containers. An attacker who controls or reaches any container can read or modify these artifacts, leading to credential theft, RCE via Laravel APP_KEY, Portainer takeover, and full compromise.
critical
CVE-2025-34205Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 22.0.843 and Application prior to 20.0.1923 (VA and SaaS deployments) contains dangerous PHP dead code present in multiple Docker-hosted PHP instances. A script named /var/www/app/resetroot.php (found in several containers) lacks authentication checks and, when executed, performs a SQL update that sets the database administrator username to 'root' and its password hash to the SHA-512 hash of the string 'password'. Separately, commented-out code in /var/www/app/lib/common/oses.php would unserialize session data (unserialize($_SESSION['osdata']))—a pattern that can enable remote code execution if re-enabled or reached with attacker-controlled serialized data. An attacker able to reach the resetroot.php endpoint can trivially reset the MySQL root password and obtain full database control; combined with deserialization issues this can lead to full remote code execution and system compromise.
critical
CVE-2025-34204Vasion Print (formerly PrinterLogic) Virtual Appliance Host and Application (VA and SaaS deployments) contains multiple Docker containers that run primary application processes (for example PHP workers, Node.js servers and custom binaries) as the root user. This increases the blast radius of a container compromise and enables lateral movement and host compromise when a container is breached.
high
CVE-2025-34203Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 22.0.1002 and Application versions prior to 20.0.2614 (VA and SaaS deployments) contain multiple Docker containers that include outdated, end-of-life, unsupported, or otherwise vulnerable third-party components (examples: Nginx 1.17.x, OpenSSL 1.1.1d, various EOL Alpine/Debian/Ubuntu base images, and EOL Laravel/PHP libraries). These components are present across many container images and increase the product's attack surface, enabling exploitation chains when leveraged by an attacker. Multiple distinct EOL versions and unpatched libraries across containers; Nginx binaries date from 2019 in several images and Laravel versions observed include EOL releases (for example Laravel 5.5.x, 5.7.x, 5.8.x).
critical