Updated CVEs

IDDescriptionSeverity
CVE-2025-38545In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw-nuss: Fix skb size by accounting for skb_shared_info While transitioning from netdev_alloc_ip_align() to build_skb(), memory for the "skb_shared_info" member of an "skb" was not allocated. Fix this by allocating "PAGE_SIZE" as the skb length, accounting for the packet length, headroom and tailroom, thereby including the required memory space for skb_shared_info.
medium
CVE-2025-38544In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix bug due to prealloc collision When userspace is using AF_RXRPC to provide a server, it has to preallocate incoming calls and assign to them call IDs that will be used to thread related recvmsg() and sendmsg() together. The preallocated call IDs will automatically be attached to calls as they come in until the pool is empty. To the kernel, the call IDs are just arbitrary numbers, but userspace can use the call ID to hold a pointer to prepared structs. In any case, the user isn't permitted to create two calls with the same call ID (call IDs become available again when the call ends) and EBADSLT should result from sendmsg() if an attempt is made to preallocate a call with an in-use call ID. However, the cleanup in the error handling will trigger both assertions in rxrpc_cleanup_call() because the call isn't marked complete and isn't marked as having been released. Fix this by setting the call state in rxrpc_service_prealloc_one() and then marking it as being released before calling the cleanup function.
medium
CVE-2025-38541In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7925: Fix null-ptr-deref in mt7925_thermal_init() devm_kasprintf() returns NULL on error. Currently, mt7925_thermal_init() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue.
medium
CVE-2025-38537In the Linux kernel, the following vulnerability has been resolved: net: phy: Don't register LEDs for genphy If a PHY has no driver, the genphy driver is probed/removed directly in phy_attach/detach. If the PHY's ofnode has an "leds" subnode, then the LEDs will be (un)registered when probing/removing the genphy driver. This could occur if the leds are for a non-generic driver that isn't loaded for whatever reason. Synchronously removing the PHY device in phy_detach leads to the following deadlock: rtnl_lock() ndo_close() ... phy_detach() phy_remove() phy_leds_unregister() led_classdev_unregister() led_trigger_set() netdev_trigger_deactivate() unregister_netdevice_notifier() rtnl_lock() There is a corresponding deadlock on the open/register side of things (and that one is reported by lockdep), but it requires a race while this one is deterministic. Generic PHYs do not support LEDs anyway, so don't bother registering them.
medium
CVE-2025-38536In the Linux kernel, the following vulnerability has been resolved: net: airoha: fix potential use-after-free in airoha_npu_get() np->name was being used after calling of_node_put(np), which releases the node and can lead to a use-after-free bug. Previously, of_node_put(np) was called unconditionally after of_find_device_by_node(np), which could result in a use-after-free if pdev is NULL. This patch moves of_node_put(np) after the error check to ensure the node is only released after both the error and success cases are handled appropriately, preventing potential resource issues.
high
CVE-2025-38534In the Linux kernel, the following vulnerability has been resolved: netfs: Fix copy-to-cache so that it performs collection with ceph+fscache The netfs copy-to-cache that is used by Ceph with local caching sets up a new request to write data just read to the cache. The request is started and then left to look after itself whilst the app continues. The request gets notified by the backing fs upon completion of the async DIO write, but then tries to wake up the app because NETFS_RREQ_OFFLOAD_COLLECTION isn't set - but the app isn't waiting there, and so the request just hangs. Fix this by setting NETFS_RREQ_OFFLOAD_COLLECTION which causes the notification from the backing filesystem to put the collection onto a work queue instead.
medium
CVE-2025-38533In the Linux kernel, the following vulnerability has been resolved: net: libwx: fix the using of Rx buffer DMA The wx_rx_buffer structure contained two DMA address fields: 'dma' and 'page_dma'. However, only 'page_dma' was actually initialized and used to program the Rx descriptor. But 'dma' was uninitialized and used in some paths. This could lead to undefined behavior, including DMA errors or use-after-free, if the uninitialized 'dma' was used. Althrough such error has not yet occurred, it is worth fixing in the code.
high
CVE-2025-38532In the Linux kernel, the following vulnerability has been resolved: net: libwx: properly reset Rx ring descriptor When device reset is triggered by feature changes such as toggling Rx VLAN offload, wx->do_reset() is called to reinitialize Rx rings. The hardware descriptor ring may retain stale values from previous sessions. And only set the length to 0 in rx_desc[0] would result in building malformed SKBs. Fix it to ensure a clean slate after device reset. [ 549.186435] [ C16] ------------[ cut here ]------------ [ 549.186457] [ C16] kernel BUG at net/core/skbuff.c:2814! [ 549.186468] [ C16] Oops: invalid opcode: 0000 [#1] SMP NOPTI [ 549.186472] [ C16] CPU: 16 UID: 0 PID: 0 Comm: swapper/16 Kdump: loaded Not tainted 6.16.0-rc4+ #23 PREEMPT(voluntary) [ 549.186476] [ C16] Hardware name: Micro-Star International Co., Ltd. MS-7E16/X670E GAMING PLUS WIFI (MS-7E16), BIOS 1.90 12/31/2024 [ 549.186478] [ C16] RIP: 0010:__pskb_pull_tail+0x3ff/0x510 [ 549.186484] [ C16] Code: 06 f0 ff 4f 34 74 7b 4d 8b 8c 24 c8 00 00 00 45 8b 84 24 c0 00 00 00 e9 c8 fd ff ff 48 c7 44 24 08 00 00 00 00 e9 5e fe ff ff <0f> 0b 31 c0 e9 23 90 5b ff 41 f7 c6 ff 0f 00 00 75 bf 49 8b 06 a8 [ 549.186487] [ C16] RSP: 0018:ffffb391c0640d70 EFLAGS: 00010282 [ 549.186490] [ C16] RAX: 00000000fffffff2 RBX: ffff8fe7e4d40200 RCX: 00000000fffffff2 [ 549.186492] [ C16] RDX: ffff8fe7c3a4bf8e RSI: 0000000000000180 RDI: ffff8fe7c3a4bf40 [ 549.186494] [ C16] RBP: ffffb391c0640da8 R08: ffff8fe7c3a4c0c0 R09: 000000000000000e [ 549.186496] [ C16] R10: ffffb391c0640d88 R11: 000000000000000e R12: ffff8fe7e4d40200 [ 549.186497] [ C16] R13: 00000000fffffff2 R14: ffff8fe7fa01a000 R15: 00000000fffffff2 [ 549.186499] [ C16] FS: 0000000000000000(0000) GS:ffff8fef5ae40000(0000) knlGS:0000000000000000 [ 549.186502] [ C16] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 549.186503] [ C16] CR2: 00007f77d81d6000 CR3: 000000051a032000 CR4: 0000000000750ef0 [ 549.186505] [ C16] PKRU: 55555554 [ 549.186507] [ C16] Call Trace: [ 549.186510] [ C16] <IRQ> [ 549.186513] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5 [ 549.186517] [ C16] __skb_pad+0xc7/0xf0 [ 549.186523] [ C16] wx_clean_rx_irq+0x355/0x3b0 [libwx] [ 549.186533] [ C16] wx_poll+0x92/0x120 [libwx] [ 549.186540] [ C16] __napi_poll+0x28/0x190 [ 549.186544] [ C16] net_rx_action+0x301/0x3f0 [ 549.186548] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5 [ 549.186551] [ C16] ? __raw_spin_lock_irqsave+0x1e/0x50 [ 549.186554] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5 [ 549.186557] [ C16] ? wake_up_nohz_cpu+0x35/0x160 [ 549.186559] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5 [ 549.186563] [ C16] handle_softirqs+0xf9/0x2c0 [ 549.186568] [ C16] __irq_exit_rcu+0xc7/0x130 [ 549.186572] [ C16] common_interrupt+0xb8/0xd0 [ 549.186576] [ C16] </IRQ> [ 549.186577] [ C16] <TASK> [ 549.186579] [ C16] asm_common_interrupt+0x22/0x40 [ 549.186582] [ C16] RIP: 0010:cpuidle_enter_state+0xc2/0x420 [ 549.186585] [ C16] Code: 00 00 e8 11 0e 5e ff e8 ac f0 ff ff 49 89 c5 0f 1f 44 00 00 31 ff e8 0d ed 5c ff 45 84 ff 0f 85 40 02 00 00 fb 0f 1f 44 00 00 <45> 85 f6 0f 88 84 01 00 00 49 63 d6 48 8d 04 52 48 8d 04 82 49 8d [ 549.186587] [ C16] RSP: 0018:ffffb391c0277e78 EFLAGS: 00000246 [ 549.186590] [ C16] RAX: ffff8fef5ae40000 RBX: 0000000000000003 RCX: 0000000000000000 [ 549.186591] [ C16] RDX: 0000007fde0faac5 RSI: ffffffff826e53f6 RDI: ffffffff826fa9b3 [ 549.186593] [ C16] RBP: ffff8fe7c3a20800 R08: 0000000000000002 R09: 0000000000000000 [ 549.186595] [ C16] R10: 0000000000000000 R11: 000000000000ffff R12: ffffffff82ed7a40 [ 549.186596] [ C16] R13: 0000007fde0faac5 R14: 0000000000000003 R15: 0000000000000000 [ 549.186601] [ C16] ? cpuidle_enter_state+0xb3/0x420 [ 549.186605] [ C16] cpuidle_en ---truncated---
medium
CVE-2025-38531In the Linux kernel, the following vulnerability has been resolved: iio: common: st_sensors: Fix use of uninitialize device structs Throughout the various probe functions &indio_dev->dev is used before it is initialized. This caused a kernel panic in st_sensors_power_enable() when the call to devm_regulator_bulk_get_enable() fails and then calls dev_err_probe() with the uninitialized device. This seems to only cause a panic with dev_err_probe(), dev_err(), dev_warn() and dev_info() don't seem to cause a panic, but are fixed as well. The issue is reported and traced here: [1]
medium
CVE-2025-38526In the Linux kernel, the following vulnerability has been resolved: ice: add NULL check in eswitch lag check The function ice_lag_is_switchdev_running() is being called from outside of the LAG event handler code. This results in the lag->upper_netdev being NULL sometimes. To avoid a NULL-pointer dereference, there needs to be a check before it is dereferenced.
medium
CVE-2025-38525In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix irq-disabled in local_bh_enable() The rxrpc_assess_MTU_size() function calls down into the IP layer to find out the MTU size for a route. When accepting an incoming call, this is called from rxrpc_new_incoming_call() which holds interrupts disabled across the code that calls down to it. Unfortunately, the IP layer uses local_bh_enable() which, config dependent, throws a warning if IRQs are enabled: WARNING: CPU: 1 PID: 5544 at kernel/softirq.c:387 __local_bh_enable_ip+0x43/0xd0 ... RIP: 0010:__local_bh_enable_ip+0x43/0xd0 ... Call Trace: <TASK> rt_cache_route+0x7e/0xa0 rt_set_nexthop.isra.0+0x3b3/0x3f0 __mkroute_output+0x43a/0x460 ip_route_output_key_hash+0xf7/0x140 ip_route_output_flow+0x1b/0x90 rxrpc_assess_MTU_size.isra.0+0x2a0/0x590 rxrpc_new_incoming_peer+0x46/0x120 rxrpc_alloc_incoming_call+0x1b1/0x400 rxrpc_new_incoming_call+0x1da/0x5e0 rxrpc_input_packet+0x827/0x900 rxrpc_io_thread+0x403/0xb60 kthread+0x2f7/0x310 ret_from_fork+0x2a/0x230 ret_from_fork_asm+0x1a/0x30 ... hardirqs last enabled at (23): _raw_spin_unlock_irq+0x24/0x50 hardirqs last disabled at (24): _raw_read_lock_irq+0x17/0x70 softirqs last enabled at (0): copy_process+0xc61/0x2730 softirqs last disabled at (25): rt_add_uncached_list+0x3c/0x90 Fix this by moving the call to rxrpc_assess_MTU_size() out of rxrpc_init_peer() and further up the stack where it can be done without interrupts disabled. It shouldn't be a problem for rxrpc_new_incoming_call() to do it after the locks are dropped as pmtud is going to be performed by the I/O thread - and we're in the I/O thread at this point.
medium
CVE-2025-38524In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix recv-recv race of completed call If a call receives an event (such as incoming data), the call gets placed on the socket's queue and a thread in recvmsg can be awakened to go and process it. Once the thread has picked up the call off of the queue, further events will cause it to be requeued, and once the socket lock is dropped (recvmsg uses call->user_mutex to allow the socket to be used in parallel), a second thread can come in and its recvmsg can pop the call off the socket queue again. In such a case, the first thread will be receiving stuff from the call and the second thread will be blocked on call->user_mutex. The first thread can, at this point, process both the event that it picked call for and the event that the second thread picked the call for and may see the call terminate - in which case the call will be "released", decoupling the call from the user call ID assigned to it (RXRPC_USER_CALL_ID in the control message). The first thread will return okay, but then the second thread will wake up holding the user_mutex and, if it sees that the call has been released by the first thread, it will BUG thusly: kernel BUG at net/rxrpc/recvmsg.c:474! Fix this by just dequeuing the call and ignoring it if it is seen to be already released. We can't tell userspace about it anyway as the user call ID has become stale.
medium
CVE-2025-38523In the Linux kernel, the following vulnerability has been resolved: cifs: Fix the smbd_response slab to allow usercopy The handling of received data in the smbdirect client code involves using copy_to_iter() to copy data from the smbd_reponse struct's packet trailer to a folioq buffer provided by netfslib that encapsulates a chunk of pagecache. If, however, CONFIG_HARDENED_USERCOPY=y, this will result in the checks then performed in copy_to_iter() oopsing with something like the following: CIFS: Attempting to mount //172.31.9.1/test CIFS: VFS: RDMA transport established usercopy: Kernel memory exposure attempt detected from SLUB object 'smbd_response_0000000091e24ea1' (offset 81, size 63)! ------------[ cut here ]------------ kernel BUG at mm/usercopy.c:102! ... RIP: 0010:usercopy_abort+0x6c/0x80 ... Call Trace: <TASK> __check_heap_object+0xe3/0x120 __check_object_size+0x4dc/0x6d0 smbd_recv+0x77f/0xfe0 [cifs] cifs_readv_from_socket+0x276/0x8f0 [cifs] cifs_read_from_socket+0xcd/0x120 [cifs] cifs_demultiplex_thread+0x7e9/0x2d50 [cifs] kthread+0x396/0x830 ret_from_fork+0x2b8/0x3b0 ret_from_fork_asm+0x1a/0x30 The problem is that the smbd_response slab's packet field isn't marked as being permitted for usercopy. Fix this by passing parameters to kmem_slab_create() to indicate that copy_to_iter() is permitted from the packet region of the smbd_response slab objects, less the header space.
medium
CVE-2025-38522In the Linux kernel, the following vulnerability has been resolved: sched/ext: Prevent update_locked_rq() calls with NULL rq Avoid invoking update_locked_rq() when the runqueue (rq) pointer is NULL in the SCX_CALL_OP and SCX_CALL_OP_RET macros. Previously, calling update_locked_rq(NULL) with preemption enabled could trigger the following warning: BUG: using __this_cpu_write() in preemptible [00000000] This happens because __this_cpu_write() is unsafe to use in preemptible context. rq is NULL when an ops invoked from an unlocked context. In such cases, we don't need to store any rq, since the value should already be NULL (unlocked). Ensure that update_locked_rq() is only called when rq is non-NULL, preventing calling __this_cpu_write() on preemptible context.
medium
CVE-2025-38519In the Linux kernel, the following vulnerability has been resolved: mm/damon: fix divide by zero in damon_get_intervals_score() The current implementation allows having zero size regions with no special reasons, but damon_get_intervals_score() gets crashed by divide by zero when the region size is zero. [ 29.403950] Oops: divide error: 0000 [#1] SMP NOPTI This patch fixes the bug, but does not disallow zero size regions to keep the backward compatibility since disallowing zero size regions might be a breaking change for some users. In addition, the same crash can happen when intervals_goal.access_bp is zero so this should be fixed in stable trees as well.
medium
CVE-2025-38518In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Disable INVLPGB on Zen2 AMD Cyan Skillfish (Family 17h, Model 47h, Stepping 0h) has an issue that causes system oopses and panics when performing TLB flush using INVLPGB. However, the problem is that that machine has misconfigured CPUID and should not report the INVLPGB bit in the first place. So zap the kernel's representation of the flag so that nothing gets confused. [ bp: Massage. ]
medium
CVE-2025-38517In the Linux kernel, the following vulnerability has been resolved: lib/alloc_tag: do not acquire non-existent lock in alloc_tag_top_users() alloc_tag_top_users() attempts to lock alloc_tag_cttype->mod_lock even when the alloc_tag_cttype is not allocated because: 1) alloc tagging is disabled because mem profiling is disabled (!alloc_tag_cttype) 2) alloc tagging is enabled, but not yet initialized (!alloc_tag_cttype) 3) alloc tagging is enabled, but failed initialization (!alloc_tag_cttype or IS_ERR(alloc_tag_cttype)) In all cases, alloc_tag_cttype is not allocated, and therefore alloc_tag_top_users() should not attempt to acquire the semaphore. This leads to a crash on memory allocation failure by attempting to acquire a non-existent semaphore: Oops: general protection fault, probably for non-canonical address 0xdffffc000000001b: 0000 [#3] SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x00000000000000d8-0x00000000000000df] CPU: 2 UID: 0 PID: 1 Comm: systemd Tainted: G D 6.16.0-rc2 #1 VOLUNTARY Tainted: [D]=DIE Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:down_read_trylock+0xaa/0x3b0 Code: d0 7c 08 84 d2 0f 85 a0 02 00 00 8b 0d df 31 dd 04 85 c9 75 29 48 b8 00 00 00 00 00 fc ff df 48 8d 6b 68 48 89 ea 48 c1 ea 03 <80> 3c 02 00 0f 85 88 02 00 00 48 3b 5b 68 0f 85 53 01 00 00 65 ff RSP: 0000:ffff8881002ce9b8 EFLAGS: 00010016 RAX: dffffc0000000000 RBX: 0000000000000070 RCX: 0000000000000000 RDX: 000000000000001b RSI: 000000000000000a RDI: 0000000000000070 RBP: 00000000000000d8 R08: 0000000000000001 R09: ffffed107dde49d1 R10: ffff8883eef24e8b R11: ffff8881002cec20 R12: 1ffff11020059d37 R13: 00000000003fff7b R14: ffff8881002cec20 R15: dffffc0000000000 FS: 00007f963f21d940(0000) GS:ffff888458ca6000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f963f5edf71 CR3: 000000010672c000 CR4: 0000000000350ef0 Call Trace: <TASK> codetag_trylock_module_list+0xd/0x20 alloc_tag_top_users+0x369/0x4b0 __show_mem+0x1cd/0x6e0 warn_alloc+0x2b1/0x390 __alloc_frozen_pages_noprof+0x12b9/0x21a0 alloc_pages_mpol+0x135/0x3e0 alloc_slab_page+0x82/0xe0 new_slab+0x212/0x240 ___slab_alloc+0x82a/0xe00 </TASK> As David Wang points out, this issue became easier to trigger after commit 780138b12381 ("alloc_tag: check mem_profiling_support in alloc_tag_init"). Before the commit, the issue occurred only when it failed to allocate and initialize alloc_tag_cttype or if a memory allocation fails before alloc_tag_init() is called. After the commit, it can be easily triggered when memory profiling is compiled but disabled at boot. To properly determine whether alloc_tag_init() has been called and its data structures initialized, verify that alloc_tag_cttype is a valid pointer before acquiring the semaphore. If the variable is NULL or an error value, it has not been properly initialized. In such a case, just skip and do not attempt to acquire the semaphore. [[email protected]: v3]
medium
CVE-2025-38511In the Linux kernel, the following vulnerability has been resolved: drm/xe/pf: Clear all LMTT pages on alloc Our LMEM buffer objects are not cleared by default on alloc and during VF provisioning we only setup LMTT PTEs for the actually provisioned LMEM range. But beyond that valid range we might leave some stale data that could either point to some other VFs allocations or even to the PF pages. Explicitly clear all new LMTT page to avoid the risk that a malicious VF would try to exploit that gap. While around add asserts to catch any undesired PTE overwrites and low-level debug traces to track LMTT PT life-cycle. (cherry picked from commit 3fae6918a3e27cce20ded2551f863fb05d4bef8d)
medium
CVE-2025-38372In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix unsafe xarray access in implicit ODP handling __xa_store() and __xa_erase() were used without holding the proper lock, which led to a lockdep warning due to unsafe RCU usage. This patch replaces them with xa_store() and xa_erase(), which perform the necessary locking internally. ============================= WARNING: suspicious RCPU usage 6.14.0-rc7_for_upstream_debug_2025_03_18_15_01 #1 Not tainted ----------------------------- ./include/linux/xarray.h:1211 suspicious rcu_dereference_protected() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 3 locks held by kworker/u136:0/219: at: process_one_work+0xbe4/0x15f0 process_one_work+0x75c/0x15f0 pagefault_mr+0x9a5/0x1390 [mlx5_ib] stack backtrace: CPU: 14 UID: 0 PID: 219 Comm: kworker/u136:0 Not tainted 6.14.0-rc7_for_upstream_debug_2025_03_18_15_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib] Call Trace: dump_stack_lvl+0xa8/0xc0 lockdep_rcu_suspicious+0x1e6/0x260 xas_create+0xb8a/0xee0 xas_store+0x73/0x14c0 __xa_store+0x13c/0x220 ? xa_store_range+0x390/0x390 ? spin_bug+0x1d0/0x1d0 pagefault_mr+0xcb5/0x1390 [mlx5_ib] ? _raw_spin_unlock+0x1f/0x30 mlx5_ib_eqe_pf_action+0x3be/0x2620 [mlx5_ib] ? lockdep_hardirqs_on_prepare+0x400/0x400 ? mlx5_ib_invalidate_range+0xcb0/0xcb0 [mlx5_ib] process_one_work+0x7db/0x15f0 ? pwq_dec_nr_in_flight+0xda0/0xda0 ? assign_work+0x168/0x240 worker_thread+0x57d/0xcd0 ? rescuer_thread+0xc40/0xc40 kthread+0x3b3/0x800 ? kthread_is_per_cpu+0xb0/0xb0 ? lock_downgrade+0x680/0x680 ? do_raw_spin_lock+0x12d/0x270 ? spin_bug+0x1d0/0x1d0 ? finish_task_switch.isra.0+0x284/0x9e0 ? lockdep_hardirqs_on_prepare+0x284/0x400 ? kthread_is_per_cpu+0xb0/0xb0 ret_from_fork+0x2d/0x70 ? kthread_is_per_cpu+0xb0/0xb0 ret_from_fork_asm+0x11/0x20
medium
CVE-2025-38370In the Linux kernel, the following vulnerability has been resolved: btrfs: fix failure to rebuild free space tree using multiple transactions If we are rebuilding a free space tree, while modifying the free space tree we may need to allocate a new metadata block group. If we end up using multiple transactions for the rebuild, when we call btrfs_end_transaction() we enter btrfs_create_pending_block_groups() which calls add_block_group_free_space() to add items to the free space tree for the block group. Then later during the free space tree rebuild, at btrfs_rebuild_free_space_tree(), we may find such new block groups and call populate_free_space_tree() for them, which fails with -EEXIST because there are already items in the free space tree. Then we abort the transaction with -EEXIST at btrfs_rebuild_free_space_tree(). Notice that we say "may find" the new block groups because a new block group may be inserted in the block groups rbtree, which is being iterated by the rebuild process, before or after the current node where the rebuild process is currently at. Syzbot recently reported such case which produces a trace like the following: ------------[ cut here ]------------ BTRFS: Transaction aborted (error -17) WARNING: CPU: 1 PID: 7626 at fs/btrfs/free-space-tree.c:1341 btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341 Modules linked in: CPU: 1 UID: 0 PID: 7626 Comm: syz.2.25 Not tainted 6.15.0-rc7-syzkaller-00085-gd7fa1af5b33e-dirty #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341 lr : btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341 sp : ffff80009c4f7740 x29: ffff80009c4f77b0 x28: ffff0000d4c3f400 x27: 0000000000000000 x26: dfff800000000000 x25: ffff70001389eee8 x24: 0000000000000003 x23: 1fffe000182b6e7b x22: 0000000000000000 x21: ffff0000c15b73d8 x20: 00000000ffffffef x19: ffff0000c15b7378 x18: 1fffe0003386f276 x17: ffff80008f31e000 x16: ffff80008adbe98c x15: 0000000000000001 x14: 1fffe0001b281550 x13: 0000000000000000 x12: 0000000000000000 x11: ffff60001b281551 x10: 0000000000000003 x9 : 1c8922000a902c00 x8 : 1c8922000a902c00 x7 : ffff800080485878 x6 : 0000000000000000 x5 : 0000000000000001 x4 : 0000000000000001 x3 : ffff80008047843c x2 : 0000000000000001 x1 : ffff80008b3ebc40 x0 : 0000000000000001 Call trace: btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341 (P) btrfs_start_pre_rw_mount+0xa78/0xe10 fs/btrfs/disk-io.c:3074 btrfs_remount_rw fs/btrfs/super.c:1319 [inline] btrfs_reconfigure+0x828/0x2418 fs/btrfs/super.c:1543 reconfigure_super+0x1d4/0x6f0 fs/super.c:1083 do_remount fs/namespace.c:3365 [inline] path_mount+0xb34/0xde0 fs/namespace.c:4200 do_mount fs/namespace.c:4221 [inline] __do_sys_mount fs/namespace.c:4432 [inline] __se_sys_mount fs/namespace.c:4409 [inline] __arm64_sys_mount+0x3e8/0x468 fs/namespace.c:4409 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 irq event stamp: 330 hardirqs last enabled at (329): [<ffff80008048590c>] raw_spin_rq_unlock_irq kernel/sched/sched.h:1525 [inline] hardirqs last enabled at (329): [<ffff80008048590c>] finish_lock_switch+0xb0/0x1c0 kernel/sched/core.c:5130 hardirqs last disabled at (330): [<ffff80008adb9e60>] el1_dbg+0x24/0x80 arch/arm64/kernel/entry-common.c:511 softirqs last enabled at (10): [<ffff8000801fbf10>] local_bh_enable+0 ---truncated---
medium
CVE-2025-38369In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Check availability of workqueue allocated by idxd wq driver before using Running IDXD workloads in a container with the /dev directory mounted can trigger a call trace or even a kernel panic when the parent process of the container is terminated. This issue occurs because, under certain configurations, Docker does not properly propagate the mount replica back to the original mount point. In this case, when the user driver detaches, the WQ is destroyed but it still calls destroy_workqueue() attempting to completes all pending work. It's necessary to check wq->wq and skip the drain if it no longer exists.
high
CVE-2025-38366In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Check validity of "num_cpu" from user space The maximum supported cpu number is EIOINTC_ROUTE_MAX_VCPUS about irqchip EIOINTC, here add validation about cpu number to avoid array pointer overflow.
high
CVE-2025-38361In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check dce_hwseq before dereferencing it [WHAT] hws was checked for null earlier in dce110_blank_stream, indicating hws can be null, and should be checked whenever it is used. (cherry picked from commit 79db43611ff61280b6de58ce1305e0b2ecf675ad)
high
CVE-2025-38360In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add more checks for DSC / HUBP ONO guarantees [WHY] For non-zero DSC instances it's possible that the HUBP domain required to drive it for sequential ONO ASICs isn't met, potentially causing the logic to the tile to enter an undefined state leading to a system hang. [HOW] Add more checks to ensure that the HUBP domain matching the DSC instance is appropriately powered. (cherry picked from commit da63df07112e5a9857a8d2aaa04255c4206754ec)
medium
CVE-2025-38359In the Linux kernel, the following vulnerability has been resolved: s390/mm: Fix in_atomic() handling in do_secure_storage_access() Kernel user spaces accesses to not exported pages in atomic context incorrectly try to resolve the page fault. With debug options enabled call traces like this can be seen: BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1523 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 419074, name: qemu-system-s39 preempt_count: 1, expected: 0 RCU nest depth: 0, expected: 0 INFO: lockdep is turned off. Preemption disabled at: [<00000383ea47cfa2>] copy_page_from_iter_atomic+0xa2/0x8a0 CPU: 12 UID: 0 PID: 419074 Comm: qemu-system-s39 Tainted: G W 6.16.0-20250531.rc0.git0.69b3a602feac.63.fc42.s390x+debug #1 PREEMPT Tainted: [W]=WARN Hardware name: IBM 3931 A01 703 (LPAR) Call Trace: [<00000383e990d282>] dump_stack_lvl+0xa2/0xe8 [<00000383e99bf152>] __might_resched+0x292/0x2d0 [<00000383eaa7c374>] down_read+0x34/0x2d0 [<00000383e99432f8>] do_secure_storage_access+0x108/0x360 [<00000383eaa724b0>] __do_pgm_check+0x130/0x220 [<00000383eaa842e4>] pgm_check_handler+0x114/0x160 [<00000383ea47d028>] copy_page_from_iter_atomic+0x128/0x8a0 ([<00000383ea47d016>] copy_page_from_iter_atomic+0x116/0x8a0) [<00000383e9c45eae>] generic_perform_write+0x16e/0x310 [<00000383e9eb87f4>] ext4_buffered_write_iter+0x84/0x160 [<00000383e9da0de4>] vfs_write+0x1c4/0x460 [<00000383e9da123c>] ksys_write+0x7c/0x100 [<00000383eaa7284e>] __do_syscall+0x15e/0x280 [<00000383eaa8417e>] system_call+0x6e/0x90 INFO: lockdep is turned off. It is not allowed to take the mmap_lock while in atomic context. Therefore handle such a secure storage access fault as if the accessed page is not mapped: the uaccess function will return -EFAULT, and the caller has to deal with this. Usually this means that the access is retried in process context, which allows to resolve the page fault (or in this case export the page).
medium
CVE-2025-38358In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between async reclaim worker and close_ctree() Syzbot reported an assertion failure due to an attempt to add a delayed iput after we have set BTRFS_FS_STATE_NO_DELAYED_IPUT in the fs_info state: WARNING: CPU: 0 PID: 65 at fs/btrfs/inode.c:3420 btrfs_add_delayed_iput+0x2f8/0x370 fs/btrfs/inode.c:3420 Modules linked in: CPU: 0 UID: 0 PID: 65 Comm: kworker/u8:4 Not tainted 6.15.0-next-20250530-syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 Workqueue: btrfs-endio-write btrfs_work_helper RIP: 0010:btrfs_add_delayed_iput+0x2f8/0x370 fs/btrfs/inode.c:3420 Code: 4e ad 5d (...) RSP: 0018:ffffc9000213f780 EFLAGS: 00010293 RAX: ffffffff83c635b7 RBX: ffff888058920000 RCX: ffff88801c769e00 RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000000 RBP: 0000000000000001 R08: ffff888058921b67 R09: 1ffff1100b12436c R10: dffffc0000000000 R11: ffffed100b12436d R12: 0000000000000001 R13: dffffc0000000000 R14: ffff88807d748000 R15: 0000000000000100 FS: 0000000000000000(0000) GS:ffff888125c53000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00002000000bd038 CR3: 000000006a142000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_put_ordered_extent+0x19f/0x470 fs/btrfs/ordered-data.c:635 btrfs_finish_one_ordered+0x11d8/0x1b10 fs/btrfs/inode.c:3312 btrfs_work_helper+0x399/0xc20 fs/btrfs/async-thread.c:312 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> This can happen due to a race with the async reclaim worker like this: 1) The async metadata reclaim worker enters shrink_delalloc(), which calls btrfs_start_delalloc_roots() with an nr_pages argument that has a value less than LONG_MAX, and that in turn enters start_delalloc_inodes(), which sets the local variable 'full_flush' to false because wbc->nr_to_write is less than LONG_MAX; 2) There it finds inode X in a root's delalloc list, grabs a reference for inode X (with igrab()), and triggers writeback for it with filemap_fdatawrite_wbc(), which creates an ordered extent for inode X; 3) The unmount sequence starts from another task, we enter close_ctree() and we flush the workqueue fs_info->endio_write_workers, which waits for the ordered extent for inode X to complete and when dropping the last reference of the ordered extent, with btrfs_put_ordered_extent(), when we call btrfs_add_delayed_iput() we don't add the inode to the list of delayed iputs because it has a refcount of 2, so we decrement it to 1 and return; 4) Shortly after at close_ctree() we call btrfs_run_delayed_iputs() which runs all delayed iputs, and then we set BTRFS_FS_STATE_NO_DELAYED_IPUT in the fs_info state; 5) The async reclaim worker, after calling filemap_fdatawrite_wbc(), now calls btrfs_add_delayed_iput() for inode X and there we trigger an assertion failure since the fs_info state has the flag BTRFS_FS_STATE_NO_DELAYED_IPUT set. Fix this by setting BTRFS_FS_STATE_NO_DELAYED_IPUT only after we wait for the async reclaim workers to finish, after we call cancel_work_sync() for them at close_ctree(), and by running delayed iputs after wait for the reclaim workers to finish and before setting the bit. This race was recently introduced by commit 19e60b2a95f5 ("btrfs: add extra warning if delayed iput is added when it's not allowed"). Without the new validation at btrfs_add_delayed_iput(), ---truncated---
medium
CVE-2025-38357In the Linux kernel, the following vulnerability has been resolved: fuse: fix runtime warning on truncate_folio_batch_exceptionals() The WARN_ON_ONCE is introduced on truncate_folio_batch_exceptionals() to capture whether the filesystem has removed all DAX entries or not. And the fix has been applied on the filesystem xfs and ext4 by the commit 0e2f80afcfa6 ("fs/dax: ensure all pages are idle prior to filesystem unmount"). Apply the missed fix on filesystem fuse to fix the runtime warning: [ 2.011450] ------------[ cut here ]------------ [ 2.011873] WARNING: CPU: 0 PID: 145 at mm/truncate.c:89 truncate_folio_batch_exceptionals+0x272/0x2b0 [ 2.012468] Modules linked in: [ 2.012718] CPU: 0 UID: 1000 PID: 145 Comm: weston Not tainted 6.16.0-rc2-WSL2-STABLE #2 PREEMPT(undef) [ 2.013292] RIP: 0010:truncate_folio_batch_exceptionals+0x272/0x2b0 [ 2.013704] Code: 48 63 d0 41 29 c5 48 8d 1c d5 00 00 00 00 4e 8d 6c 2a 01 49 c1 e5 03 eb 09 48 83 c3 08 49 39 dd 74 83 41 f6 44 1c 08 01 74 ef <0f> 0b 49 8b 34 1e 48 89 ef e8 10 a2 17 00 eb df 48 8b 7d 00 e8 35 [ 2.014845] RSP: 0018:ffffa47ec33f3b10 EFLAGS: 00010202 [ 2.015279] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 2.015884] RDX: 0000000000000000 RSI: ffffa47ec33f3ca0 RDI: ffff98aa44f3fa80 [ 2.016377] RBP: ffff98aa44f3fbf0 R08: ffffa47ec33f3ba8 R09: 0000000000000000 [ 2.016942] R10: 0000000000000001 R11: 0000000000000000 R12: ffffa47ec33f3ca0 [ 2.017437] R13: 0000000000000008 R14: ffffa47ec33f3ba8 R15: 0000000000000000 [ 2.017972] FS: 000079ce006afa40(0000) GS:ffff98aade441000(0000) knlGS:0000000000000000 [ 2.018510] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2.018987] CR2: 000079ce03e74000 CR3: 000000010784f006 CR4: 0000000000372eb0 [ 2.019518] Call Trace: [ 2.019729] <TASK> [ 2.019901] truncate_inode_pages_range+0xd8/0x400 [ 2.020280] ? timerqueue_add+0x66/0xb0 [ 2.020574] ? get_nohz_timer_target+0x2a/0x140 [ 2.020904] ? timerqueue_add+0x66/0xb0 [ 2.021231] ? timerqueue_del+0x2e/0x50 [ 2.021646] ? __remove_hrtimer+0x39/0x90 [ 2.022017] ? srso_alias_untrain_ret+0x1/0x10 [ 2.022497] ? psi_group_change+0x136/0x350 [ 2.023046] ? _raw_spin_unlock+0xe/0x30 [ 2.023514] ? finish_task_switch.isra.0+0x8d/0x280 [ 2.024068] ? __schedule+0x532/0xbd0 [ 2.024551] fuse_evict_inode+0x29/0x190 [ 2.025131] evict+0x100/0x270 [ 2.025641] ? _atomic_dec_and_lock+0x39/0x50 [ 2.026316] ? __pfx_generic_delete_inode+0x10/0x10 [ 2.026843] __dentry_kill+0x71/0x180 [ 2.027335] dput+0xeb/0x1b0 [ 2.027725] __fput+0x136/0x2b0 [ 2.028054] __x64_sys_close+0x3d/0x80 [ 2.028469] do_syscall_64+0x6d/0x1b0 [ 2.028832] ? clear_bhb_loop+0x30/0x80 [ 2.029182] ? clear_bhb_loop+0x30/0x80 [ 2.029533] ? clear_bhb_loop+0x30/0x80 [ 2.029902] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 2.030423] RIP: 0033:0x79ce03d0d067 [ 2.030820] Code: b8 ff ff ff ff e9 3e ff ff ff 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 c3 a7 f8 ff [ 2.032354] RSP: 002b:00007ffef0498948 EFLAGS: 00000246 ORIG_RAX: 0000000000000003 [ 2.032939] RAX: ffffffffffffffda RBX: 00007ffef0498960 RCX: 000079ce03d0d067 [ 2.033612] RDX: 0000000000000003 RSI: 0000000000001000 RDI: 000000000000000d [ 2.034289] RBP: 00007ffef0498a30 R08: 000000000000000d R09: 0000000000000000 [ 2.034944] R10: 00007ffef0498978 R11: 0000000000000246 R12: 0000000000000001 [ 2.035610] R13: 00007ffef0498960 R14: 000079ce03e09ce0 R15: 0000000000000003 [ 2.036301] </TASK> [ 2.036532] ---[ end trace 0000000000000000 ]---
high
CVE-2025-38356In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc: Explicitly exit CT safe mode on unwind During driver probe we might be briefly using CT safe mode, which is based on a delayed work, but usually we are able to stop this once we have IRQ fully operational. However, if we abort the probe quite early then during unwind we might try to destroy the workqueue while there is still a pending delayed work that attempts to restart itself which triggers a WARN. This was recently observed during unsuccessful VF initialization: [ ] xe 0000:00:02.1: probe with driver xe failed with error -62 [ ] ------------[ cut here ]------------ [ ] workqueue: cannot queue safe_mode_worker_func [xe] on wq xe-g2h-wq [ ] WARNING: CPU: 9 PID: 0 at kernel/workqueue.c:2257 __queue_work+0x287/0x710 [ ] RIP: 0010:__queue_work+0x287/0x710 [ ] Call Trace: [ ] delayed_work_timer_fn+0x19/0x30 [ ] call_timer_fn+0xa1/0x2a0 Exit the CT safe mode on unwind to avoid that warning. (cherry picked from commit 2ddbb73ec20b98e70a5200cb85deade22ccea2ec)
medium
CVE-2025-38355In the Linux kernel, the following vulnerability has been resolved: drm/xe: Process deferred GGTT node removals on device unwind While we are indirectly draining our dedicated workqueue ggtt->wq that we use to complete asynchronous removal of some GGTT nodes, this happends as part of the managed-drm unwinding (ggtt_fini_early), which could be later then manage-device unwinding, where we could already unmap our MMIO/GMS mapping (mmio_fini). This was recently observed during unsuccessful VF initialization: [ ] xe 0000:00:02.1: probe with driver xe failed with error -62 [ ] xe 0000:00:02.1: DEVRES REL ffff88811e747340 __xe_bo_unpin_map_no_vm (16 bytes) [ ] xe 0000:00:02.1: DEVRES REL ffff88811e747540 __xe_bo_unpin_map_no_vm (16 bytes) [ ] xe 0000:00:02.1: DEVRES REL ffff88811e747240 __xe_bo_unpin_map_no_vm (16 bytes) [ ] xe 0000:00:02.1: DEVRES REL ffff88811e747040 tiles_fini (16 bytes) [ ] xe 0000:00:02.1: DEVRES REL ffff88811e746840 mmio_fini (16 bytes) [ ] xe 0000:00:02.1: DEVRES REL ffff88811e747f40 xe_bo_pinned_fini (16 bytes) [ ] xe 0000:00:02.1: DEVRES REL ffff88811e746b40 devm_drm_dev_init_release (16 bytes) [ ] xe 0000:00:02.1: [drm:drm_managed_release] drmres release begin [ ] xe 0000:00:02.1: [drm:drm_managed_release] REL ffff88810ef81640 __fini_relay (8 bytes) [ ] xe 0000:00:02.1: [drm:drm_managed_release] REL ffff88810ef80d40 guc_ct_fini (8 bytes) [ ] xe 0000:00:02.1: [drm:drm_managed_release] REL ffff88810ef80040 __drmm_mutex_release (8 bytes) [ ] xe 0000:00:02.1: [drm:drm_managed_release] REL ffff88810ef80140 ggtt_fini_early (8 bytes) and this was leading to: [ ] BUG: unable to handle page fault for address: ffffc900058162a0 [ ] #PF: supervisor write access in kernel mode [ ] #PF: error_code(0x0002) - not-present page [ ] Oops: Oops: 0002 [#1] SMP NOPTI [ ] Tainted: [W]=WARN [ ] Workqueue: xe-ggtt-wq ggtt_node_remove_work_func [xe] [ ] RIP: 0010:xe_ggtt_set_pte+0x6d/0x350 [xe] [ ] Call Trace: [ ] <TASK> [ ] xe_ggtt_clear+0xb0/0x270 [xe] [ ] ggtt_node_remove+0xbb/0x120 [xe] [ ] ggtt_node_remove_work_func+0x30/0x50 [xe] [ ] process_one_work+0x22b/0x6f0 [ ] worker_thread+0x1e8/0x3d Add managed-device action that will explicitly drain the workqueue with all pending node removals prior to releasing MMIO/GSM mapping. (cherry picked from commit 89d2835c3680ab1938e22ad81b1c9f8c686bd391)
medium
CVE-2025-38353In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix taking invalid lock on wedge If device wedges on e.g. GuC upload, the submission is not yet enabled and the state is not even initialized. Protect the wedge call so it does nothing in this case. It fixes the following splat: [] xe 0000:bf:00.0: [drm] device wedged, needs recovery [] ------------[ cut here ]------------ [] DEBUG_LOCKS_WARN_ON(lock->magic != lock) [] WARNING: CPU: 48 PID: 312 at kernel/locking/mutex.c:564 __mutex_lock+0x8a1/0xe60 ... [] RIP: 0010:__mutex_lock+0x8a1/0xe60 [] mutex_lock_nested+0x1b/0x30 [] xe_guc_submit_wedge+0x80/0x2b0 [xe]
medium
CVE-2025-38351In the Linux kernel, the following vulnerability has been resolved: KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush In KVM guests with Hyper-V hypercalls enabled, the hypercalls HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST and HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX allow a guest to request invalidation of portions of a virtual TLB. For this, the hypercall parameter includes a list of GVAs that are supposed to be invalidated. However, when non-canonical GVAs are passed, there is currently no filtering in place and they are eventually passed to checked invocations of INVVPID on Intel / INVLPGA on AMD. While AMD's INVLPGA silently ignores non-canonical addresses (effectively a no-op), Intel's INVVPID explicitly signals VM-Fail and ultimately triggers the WARN_ONCE in invvpid_error(): invvpid failed: ext=0x0 vpid=1 gva=0xaaaaaaaaaaaaa000 WARNING: CPU: 6 PID: 326 at arch/x86/kvm/vmx/vmx.c:482 invvpid_error+0x91/0xa0 [kvm_intel] Modules linked in: kvm_intel kvm 9pnet_virtio irqbypass fuse CPU: 6 UID: 0 PID: 326 Comm: kvm-vm Not tainted 6.15.0 #14 PREEMPT(voluntary) RIP: 0010:invvpid_error+0x91/0xa0 [kvm_intel] Call Trace: vmx_flush_tlb_gva+0x320/0x490 [kvm_intel] kvm_hv_vcpu_flush_tlb+0x24f/0x4f0 [kvm] kvm_arch_vcpu_ioctl_run+0x3013/0x5810 [kvm] Hyper-V documents that invalid GVAs (those that are beyond a partition's GVA space) are to be ignored. While not completely clear whether this ruling also applies to non-canonical GVAs, it is likely fine to make that assumption, and manual testing on Azure confirms "real" Hyper-V interprets the specification in the same way. Skip non-canonical GVAs when processing the list of address to avoid tripping the INVVPID failure. Alternatively, KVM could filter out "bad" GVAs before inserting into the FIFO, but practically speaking the only downside of pushing validation to the final processing is that doing so is suboptimal for the guest, and no well-behaved guest will request TLB flushes for non-canonical addresses.
medium
CVE-2025-38349In the Linux kernel, the following vulnerability has been resolved: eventpoll: don't decrement ep refcount while still holding the ep mutex Jann Horn points out that epoll is decrementing the ep refcount and then doing a mutex_unlock(&ep->mtx); afterwards. That's very wrong, because it can lead to a use-after-free. That pattern is actually fine for the very last reference, because the code in question will delay the actual call to "ep_free(ep)" until after it has unlocked the mutex. But it's wrong for the much subtler "next to last" case when somebody *else* may also be dropping their reference and free the ep while we're still using the mutex. Note that this is true even if that other user is also using the same ep mutex: mutexes, unlike spinlocks, can not be used for object ownership, even if they guarantee mutual exclusion. A mutex "unlock" operation is not atomic, and as one user is still accessing the mutex as part of unlocking it, another user can come in and get the now released mutex and free the data structure while the first user is still cleaning up. See our mutex documentation in Documentation/locking/mutex-design.rst, in particular the section [1] about semantics: "mutex_unlock() may access the mutex structure even after it has internally released the lock already - so it's not safe for another context to acquire the mutex and assume that the mutex_unlock() context is not using the structure anymore" So if we drop our ep ref before the mutex unlock, but we weren't the last one, we may then unlock the mutex, another user comes in, drops _their_ reference and releases the 'ep' as it now has no users - all while the mutex_unlock() is still accessing it. Fix this by simply moving the ep refcount dropping to outside the mutex: the refcount itself is atomic, and doesn't need mutex protection (that's the whole _point_ of refcounts: unlike mutexes, they are inherently about object lifetimes).
high
CVE-2025-38343In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: drop fragments with multicast or broadcast RA IEEE 802.11 fragmentation can only be applied to unicast frames. Therefore, drop fragments with multicast or broadcast RA. This patch addresses vulnerabilities such as CVE-2020-26145.
medium
CVE-2025-38341In the Linux kernel, the following vulnerability has been resolved: eth: fbnic: avoid double free when failing to DMA-map FW msg The semantics are that caller of fbnic_mbx_map_msg() retains the ownership of the message on error. All existing callers dutifully free the page.
high
CVE-2025-38340In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix OOB memory read access in KUnit test KASAN reported out of bounds access - cs_dsp_mock_bin_add_name_or_info(), because the source string length was rounded up to the allocation size.
high
CVE-2025-38339In the Linux kernel, the following vulnerability has been resolved: powerpc/bpf: fix JIT code size calculation of bpf trampoline arch_bpf_trampoline_size() provides JIT size of the BPF trampoline before the buffer for JIT'ing it is allocated. The total number of instructions emitted for BPF trampoline JIT code depends on where the final image is located. So, the size arrived at with the dummy pass in arch_bpf_trampoline_size() can vary from the actual size needed in arch_prepare_bpf_trampoline(). When the instructions accounted in arch_bpf_trampoline_size() is less than the number of instructions emitted during the actual JIT compile of the trampoline, the below warning is produced: WARNING: CPU: 8 PID: 204190 at arch/powerpc/net/bpf_jit_comp.c:981 __arch_prepare_bpf_trampoline.isra.0+0xd2c/0xdcc which is: /* Make sure the trampoline generation logic doesn't overflow */ if (image && WARN_ON_ONCE(&image[ctx->idx] > (u32 *)rw_image_end - BPF_INSN_SAFETY)) { So, during the dummy pass, instead of providing some arbitrary image location, account for maximum possible instructions if and when there is a dependency with image location for JIT'ing.
medium
CVE-2025-38338In the Linux kernel, the following vulnerability has been resolved: fs/nfs/read: fix double-unlock bug in nfs_return_empty_folio() Sometimes, when a file was read while it was being truncated by another NFS client, the kernel could deadlock because folio_unlock() was called twice, and the second call would XOR back the `PG_locked` flag. Most of the time (depending on the timing of the truncation), nobody notices the problem because folio_unlock() gets called three times, which flips `PG_locked` back off: 1. vfs_read, nfs_read_folio, ... nfs_read_add_folio, nfs_return_empty_folio 2. vfs_read, nfs_read_folio, ... netfs_read_collection, netfs_unlock_abandoned_read_pages 3. vfs_read, ... nfs_do_read_folio, nfs_read_add_folio, nfs_return_empty_folio The problem is that nfs_read_add_folio() is not supposed to unlock the folio if fscache is enabled, and a nfs_netfs_folio_unlock() check is missing in nfs_return_empty_folio(). Rarely this leads to a warning in netfs_read_collection(): ------------[ cut here ]------------ R=0000031c: folio 10 is not locked WARNING: CPU: 0 PID: 29 at fs/netfs/read_collect.c:133 netfs_read_collection+0x7c0/0xf00 [...] Workqueue: events_unbound netfs_read_collection_worker RIP: 0010:netfs_read_collection+0x7c0/0xf00 [...] Call Trace: <TASK> netfs_read_collection_worker+0x67/0x80 process_one_work+0x12e/0x2c0 worker_thread+0x295/0x3a0 Most of the time, however, processes just get stuck forever in folio_wait_bit_common(), waiting for `PG_locked` to disappear, which never happens because nobody is really holding the folio lock.
high
CVE-2025-38333In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to bail out in get_new_segment() ------------[ cut here ]------------ WARNING: CPU: 3 PID: 579 at fs/f2fs/segment.c:2832 new_curseg+0x5e8/0x6dc pc : new_curseg+0x5e8/0x6dc Call trace: new_curseg+0x5e8/0x6dc f2fs_allocate_data_block+0xa54/0xe28 do_write_page+0x6c/0x194 f2fs_do_write_node_page+0x38/0x78 __write_node_page+0x248/0x6d4 f2fs_sync_node_pages+0x524/0x72c f2fs_write_checkpoint+0x4bc/0x9b0 __checkpoint_and_complete_reqs+0x80/0x244 issue_checkpoint_thread+0x8c/0xec kthread+0x114/0x1bc ret_from_fork+0x10/0x20 get_new_segment() detects inconsistent status in between free_segmap and free_secmap, let's record such error into super block, and bail out get_new_segment() instead of continue using the segment.
medium
CVE-2025-38330In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix OOB memory read access in KUnit test (ctl cache) KASAN reported out of bounds access - cs_dsp_ctl_cache_init_multiple_offsets(). The code uses mock_coeff_template.length_bytes (4 bytes) for register value allocations. But later, this length is set to 8 bytes which causes test code failures. As fix, just remove the lenght override, keeping the original value 4 for all operations.
high
CVE-2025-38329In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix OOB memory read access in KUnit test (wmfw info) KASAN reported out of bounds access - cs_dsp_mock_wmfw_add_info(), because the source string length was rounded up to the allocation size.
high
CVE-2025-38327In the Linux kernel, the following vulnerability has been resolved: fgraph: Do not enable function_graph tracer when setting funcgraph-args When setting the funcgraph-args option when function graph tracer is net enabled, it incorrectly enables it. Worse, it unregisters itself when it was never registered. Then when it gets enabled again, it will register itself a second time causing a WARNing. ~# echo 1 > /sys/kernel/tracing/options/funcgraph-args ~# head -20 /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 813/26317372 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <idle>-0 [007] d..4. 358.966010: 7) 1.692 us | fetch_next_timer_interrupt(basej=4294981640, basem=357956000000, base_local=0xffff88823c3ae040, base_global=0xffff88823c3af300, tevt=0xffff888100e47cb8); <idle>-0 [007] d..4. 358.966012: 7) | tmigr_cpu_deactivate(nextexp=357988000000) { <idle>-0 [007] d..4. 358.966013: 7) | _raw_spin_lock(lock=0xffff88823c3b2320) { <idle>-0 [007] d..4. 358.966014: 7) 0.981 us | preempt_count_add(val=1); <idle>-0 [007] d..5. 358.966017: 7) 1.058 us | do_raw_spin_lock(lock=0xffff88823c3b2320); <idle>-0 [007] d..4. 358.966019: 7) 5.824 us | } <idle>-0 [007] d..5. 358.966021: 7) | tmigr_inactive_up(group=0xffff888100cb9000, child=0x0, data=0xffff888100e47bc0) { <idle>-0 [007] d..5. 358.966022: 7) | tmigr_update_events(group=0xffff888100cb9000, child=0x0, data=0xffff888100e47bc0) { Notice the "tracer: nop" at the top there. The current tracer is the "nop" tracer, but the content is obviously the function graph tracer. Enabling function graph tracing will cause it to register again and trigger a warning in the accounting: ~# echo function_graph > /sys/kernel/tracing/current_tracer -bash: echo: write error: Device or resource busy With the dmesg of: ------------[ cut here ]------------ WARNING: CPU: 7 PID: 1095 at kernel/trace/ftrace.c:3509 ftrace_startup_subops+0xc1e/0x1000 Modules linked in: kvm_intel kvm irqbypass CPU: 7 UID: 0 PID: 1095 Comm: bash Not tainted 6.16.0-rc2-test-00006-gea03de4105d3 #24 PREEMPT Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:ftrace_startup_subops+0xc1e/0x1000 Code: 48 b8 22 01 00 00 00 00 ad de 49 89 84 24 88 01 00 00 8b 44 24 08 89 04 24 e9 c3 f7 ff ff c7 04 24 ed ff ff ff e9 b7 f7 ff ff <0f> 0b c7 04 24 f0 ff ff ff e9 a9 f7 ff ff c7 04 24 f4 ff ff ff e9 RSP: 0018:ffff888133cff948 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 1ffff1102679ff31 RCX: 0000000000000000 RDX: 1ffffffff0b27a60 RSI: ffffffff8593d2f0 RDI: ffffffff85941140 RBP: 00000000000c2041 R08: ffffffffffffffff R09: ffffed1020240221 R10: ffff88810120110f R11: ffffed1020240214 R12: ffffffff8593d2f0 R13: ffffffff8593d300 R14: ffffffff85941140 R15: ffffffff85631100 FS: 00007f7ec6f28740(0000) GS:ffff8882b5251000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7ec6f181c0 CR3: 000000012f1d0005 CR4: 0000000000172ef0 Call Trace: <TASK> ? __pfx_ftrace_startup_subops+0x10/0x10 ? find_held_lock+0x2b/0x80 ? ftrace_stub_direct_tramp+0x10/0x10 ? ftrace_stub_direct_tramp+0x10/0x10 ? trace_preempt_on+0xd0/0x110 ? __pfx_trace_graph_entry_args+0x10/ ---truncated---
medium
CVE-2025-38325In the Linux kernel, the following vulnerability has been resolved: ksmbd: add free_transport ops in ksmbd connection free_transport function for tcp connection can be called from smbdirect. It will cause kernel oops. This patch add free_transport ops in ksmbd connection, and add each free_transports for tcp and smbdirect.
medium
CVE-2025-38321In the Linux kernel, the following vulnerability has been resolved: smb: Log an error when close_all_cached_dirs fails Under low-memory conditions, close_all_cached_dirs() can't move the dentries to a separate list to dput() them once the locks are dropped. This will result in a "Dentry still in use" error, so add an error message that makes it clear this is what happened: [ 495.281119] CIFS: VFS: \\otters.example.com\share Out of memory while dropping dentries [ 495.281595] ------------[ cut here ]------------ [ 495.281887] BUG: Dentry ffff888115531138{i=78,n=/} still in use (2) [unmount of cifs cifs] [ 495.282391] WARNING: CPU: 1 PID: 2329 at fs/dcache.c:1536 umount_check+0xc8/0xf0 Also, bail out of looping through all tcons as soon as a single allocation fails, since we're already in trouble, and kmalloc() attempts for subseqeuent tcons are likely to fail just like the first one did.
medium
CVE-2025-38318In the Linux kernel, the following vulnerability has been resolved: perf: arm-ni: Fix missing platform_set_drvdata() Add missing platform_set_drvdata in arm_ni_probe(), otherwise calling platform_get_drvdata() in remove returns NULL.
medium
CVE-2025-38317In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix buffer overflow in debugfs If the user tries to write more than 32 bytes then it results in memory corruption. Fortunately, this is debugfs so it's limited to root users.
high
CVE-2025-38316In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: avoid NULL pointer dereference in mt7996_set_monitor() The function mt7996_set_monitor() dereferences phy before the NULL sanity check. Fix this to avoid NULL pointer dereference by moving the dereference after the check.
medium
CVE-2025-38315In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btintel: Check dsbr size from EFI variable Since the size of struct btintel_dsbr is already known, we can just start there instead of querying the EFI variable size. If the final result doesn't match what we expect also fail. This fixes a stack buffer overflow when the EFI variable is larger than struct btintel_dsbr.
medium
CVE-2025-38314In the Linux kernel, the following vulnerability has been resolved: virtio-pci: Fix result size returned for the admin command completion The result size returned by virtio_pci_admin_dev_parts_get() is 8 bytes larger than the actual result data size. This occurs because the result_sg_size field of the command is filled with the result length from virtqueue_get_buf(), which includes both the data size and an additional 8 bytes of status. This oversized result size causes two issues: 1. The state transferred to the destination includes 8 bytes of extra data at the end. 2. The allocated buffer in the kernel may be smaller than the returned size, leading to failures when reading beyond the allocated size. The commit fixes this by subtracting the status size from the result of virtqueue_get_buf(). This fix has been tested through live migrations with virtio-net, virtio-net-transitional, and virtio-blk devices.
medium
CVE-2025-38311In the Linux kernel, the following vulnerability has been resolved: iavf: get rid of the crit lock Get rid of the crit lock. That frees us from the error prone logic of try_locks. Thanks to netdev_lock() by Jakub it is now easy, and in most cases we were protected by it already - replace crit lock by netdev lock when it was not the case. Lockdep reports that we should cancel the work under crit_lock [splat1], and that was the scheme we have mostly followed since [1] by Slawomir. But when that is done we still got into deadlocks [splat2]. So instead we should look at the bigger problem, namely "weird locking/scheduling" of the iavf. The first step to fix that is to remove the crit lock. I will followup with a -next series that simplifies scheduling/tasks. Cancel the work without netdev lock (weird unlock+lock scheme), to fix the [splat2] (which would be totally ugly if we would kept the crit lock). Extend protected part of iavf_watchdog_task() to include scheduling more work. Note that the removed comment in iavf_reset_task() was misplaced, it belonged to inside of the removed if condition, so it's gone now. [splat1] - w/o this patch - The deadlock during VF removal: WARNING: possible circular locking dependency detected sh/3825 is trying to acquire lock: ((work_completion)(&(&adapter->watchdog_task)->work)){+.+.}-{0:0}, at: start_flush_work+0x1a1/0x470 but task is already holding lock: (&adapter->crit_lock){+.+.}-{4:4}, at: iavf_remove+0xd1/0x690 [iavf] which lock already depends on the new lock. [splat2] - when cancelling work under crit lock, w/o this series, see [2] for the band aid attempt WARNING: possible circular locking dependency detected sh/3550 is trying to acquire lock: ((wq_completion)iavf){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x26/0x90 but task is already holding lock: (&dev->lock){+.+.}-{4:4}, at: iavf_remove+0xa6/0x6e0 [iavf] which lock already depends on the new lock. [1] fc2e6b3b132a ("iavf: Rework mutexes for better synchronisation") [2] https://github.com/pkitszel/linux/commit/52dddbfc2bb60294083f5711a158a
medium
CVE-2025-38309In the Linux kernel, the following vulnerability has been resolved: drm/xe/vm: move xe_svm_init() earlier In xe_vm_close_and_put() we need to be able to call xe_svm_fini(), however during vm creation we can call this on the error path, before having actually initialised the svm state, leading to various splats followed by a fatal NPD. (cherry picked from commit 4f296d77cf49fcb5f90b4674123ad7f3a0676165)
medium