| CVE-2026-23146 | In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_uart: fix null-ptr-deref in hci_uart_write_work hci_uart_set_proto() sets HCI_UART_PROTO_INIT before calling hci_uart_register_dev(), which calls proto->open() to initialize hu->priv. However, if a TTY write wakeup occurs during this window, hci_uart_tx_wakeup() may schedule write_work before hu->priv is initialized, leading to a NULL pointer dereference in hci_uart_write_work() when proto->dequeue() accesses hu->priv. The race condition is: CPU0 CPU1 ---- ---- hci_uart_set_proto() set_bit(HCI_UART_PROTO_INIT) hci_uart_register_dev() tty write wakeup hci_uart_tty_wakeup() hci_uart_tx_wakeup() schedule_work(&hu->write_work) proto->open(hu) // initializes hu->priv hci_uart_write_work() hci_uart_dequeue() proto->dequeue(hu) // accesses hu->priv (NULL!) Fix this by moving set_bit(HCI_UART_PROTO_INIT) after proto->open() succeeds, ensuring hu->priv is initialized before any work can be scheduled. | medium |
| CVE-2026-23145 | In the Linux kernel, the following vulnerability has been resolved: ext4: fix iloc.bh leak in ext4_xattr_inode_update_ref The error branch for ext4_xattr_inode_update_ref forget to release the refcount for iloc.bh. Find this when review code. | high |
| CVE-2026-23144 | In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: cleanup attrs subdirs on context dir setup failure When a context DAMON sysfs directory setup is failed after setup of attrs/ directory, subdirectories of attrs/ directory are not cleaned up. As a result, DAMON sysfs interface is nearly broken until the system reboots, and the memory for the unremoved directory is leaked. Cleanup the directories under such failures. | medium |
| CVE-2026-23143 | In the Linux kernel, the following vulnerability has been resolved: virtio_net: Fix misalignment bug in struct virtnet_info Use the new TRAILING_OVERLAP() helper to fix a misalignment bug along with the following warning: drivers/net/virtio_net.c:429:46: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end] This helper creates a union between a flexible-array member (FAM) and a set of members that would otherwise follow it (in this case `u8 rss_hash_key_data[VIRTIO_NET_RSS_MAX_KEY_SIZE];`). This overlays the trailing members (rss_hash_key_data) onto the FAM (hash_key_data) while keeping the FAM and the start of MEMBERS aligned. The static_assert() ensures this alignment remains. Notice that due to tail padding in flexible `struct virtio_net_rss_config_trailer`, `rss_trailer.hash_key_data` (at offset 83 in struct virtnet_info) and `rss_hash_key_data` (at offset 84 in struct virtnet_info) are misaligned by one byte. See below: struct virtio_net_rss_config_trailer { __le16 max_tx_vq; /* 0 2 */ __u8 hash_key_length; /* 2 1 */ __u8 hash_key_data[]; /* 3 0 */ /* size: 4, cachelines: 1, members: 3 */ /* padding: 1 */ /* last cacheline: 4 bytes */ }; struct virtnet_info { ... struct virtio_net_rss_config_trailer rss_trailer; /* 80 4 */ /* XXX last struct has 1 byte of padding */ u8 rss_hash_key_data[40]; /* 84 40 */ ... /* size: 832, cachelines: 13, members: 48 */ /* sum members: 801, holes: 8, sum holes: 31 */ /* paddings: 2, sum paddings: 5 */ }; After changes, those members are correctly aligned at offset 795: struct virtnet_info { ... union { struct virtio_net_rss_config_trailer rss_trailer; /* 792 4 */ struct { unsigned char __offset_to_hash_key_data[3]; /* 792 3 */ u8 rss_hash_key_data[40]; /* 795 40 */ }; /* 792 43 */ }; /* 792 44 */ ... /* size: 840, cachelines: 14, members: 47 */ /* sum members: 801, holes: 8, sum holes: 35 */ /* padding: 4 */ /* paddings: 1, sum paddings: 4 */ /* last cacheline: 8 bytes */ }; As a result, the RSS key passed to the device is shifted by 1 byte: the last byte is cut off, and instead a (possibly uninitialized) byte is added at the beginning. As a last note `struct virtio_net_rss_config_hdr *rss_hdr;` is also moved to the end, since it seems those three members should stick around together. :) | high |
| CVE-2026-23142 | In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs-scheme: cleanup access_pattern subdirs on scheme dir setup failure When a DAMOS-scheme DAMON sysfs directory setup fails after setup of access_pattern/ directory, subdirectories of access_pattern/ directory are not cleaned up. As a result, DAMON sysfs interface is nearly broken until the system reboots, and the memory for the unremoved directory is leaked. Cleanup the directories under such failures. | medium |
| CVE-2026-23141 | In the Linux kernel, the following vulnerability has been resolved: btrfs: send: check for inline extents in range_is_hole_in_parent() Before accessing the disk_bytenr field of a file extent item we need to check if we are dealing with an inline extent. This is because for inline extents their data starts at the offset of the disk_bytenr field. So accessing the disk_bytenr means we are accessing inline data or in case the inline data is less than 8 bytes we can actually cause an invalid memory access if this inline extent item is the first item in the leaf or access metadata from other items. | medium |
| CVE-2026-23140 | In the Linux kernel, the following vulnerability has been resolved: bpf, test_run: Subtract size of xdp_frame from allowed metadata size The xdp_frame structure takes up part of the XDP frame headroom, limiting the size of the metadata. However, in bpf_test_run, we don't take this into account, which makes it possible for userspace to supply a metadata size that is too large (taking up the entire headroom). If userspace supplies such a large metadata size in live packet mode, the xdp_update_frame_from_buff() call in xdp_test_run_init_page() call will fail, after which packet transmission proceeds with an uninitialised frame structure, leading to the usual Bad Stuff. The commit in the Fixes tag fixed a related bug where the second check in xdp_update_frame_from_buff() could fail, but did not add any additional constraints on the metadata size. Complete the fix by adding an additional check on the metadata size. Reorder the checks slightly to make the logic clearer and add a comment. | medium |
| CVE-2026-23139 | In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_conncount: update last_gc only when GC has been performed Currently last_gc is being updated everytime a new connection is tracked, that means that it is updated even if a GC wasn't performed. With a sufficiently high packet rate, it is possible to always bypass the GC, causing the list to grow infinitely. Update the last_gc value only when a GC has been actually performed. | medium |
| CVE-2026-23138 | In the Linux kernel, the following vulnerability has been resolved: tracing: Add recursion protection in kernel stack trace recording A bug was reported about an infinite recursion caused by tracing the rcu events with the kernel stack trace trigger enabled. The stack trace code called back into RCU which then called the stack trace again. Expand the ftrace recursion protection to add a set of bits to protect events from recursion. Each bit represents the context that the event is in (normal, softirq, interrupt and NMI). Have the stack trace code use the interrupt context to protect against recursion. Note, the bug showed an issue in both the RCU code as well as the tracing stacktrace code. This only handles the tracing stack trace side of the bug. The RCU fix will be handled separately. | medium |
| CVE-2026-23137 | In the Linux kernel, the following vulnerability has been resolved: of: unittest: Fix memory leak in unittest_data_add() In unittest_data_add(), if of_resolve_phandles() fails, the allocated unittest_data is not freed, leading to a memory leak. Fix this by using scope-based cleanup helper __free(kfree) for automatic resource cleanup. This ensures unittest_data is automatically freed when it goes out of scope in error paths. For the success path, use retain_and_null_ptr() to transfer ownership of the memory to the device tree and prevent double freeing. | medium |
| CVE-2026-23136 | In the Linux kernel, the following vulnerability has been resolved: libceph: reset sparse-read state in osd_fault() When a fault occurs, the connection is abandoned, reestablished, and any pending operations are retried. The OSD client tracks the progress of a sparse-read reply using a separate state machine, largely independent of the messenger's state. If a connection is lost mid-payload or the sparse-read state machine returns an error, the sparse-read state is not reset. The OSD client will then interpret the beginning of a new reply as the continuation of the old one. If this makes the sparse-read machinery enter a failure state, it may never recover, producing loops like: libceph: [0] got 0 extents libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read Therefore, reset the sparse-read state in osd_fault(), ensuring retries start from a clean state. | medium |
| CVE-2026-23135 | In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix dma_free_coherent() pointer dma_alloc_coherent() allocates a DMA mapped buffer and stores the addresses in XXX_unaligned fields. Those should be reused when freeing the buffer rather than the aligned addresses. | high |
| CVE-2026-23134 | In the Linux kernel, the following vulnerability has been resolved: slab: fix kmalloc_nolock() context check for PREEMPT_RT On PREEMPT_RT kernels, local_lock becomes a sleeping lock. The current check in kmalloc_nolock() only verifies we're not in NMI or hard IRQ context, but misses the case where preemption is disabled. When a BPF program runs from a tracepoint with preemption disabled (preempt_count > 0), kmalloc_nolock() proceeds to call local_lock_irqsave() which attempts to acquire a sleeping lock, triggering: BUG: sleeping function called from invalid context in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 6128 preempt_count: 2, expected: 0 Fix this by checking !preemptible() on PREEMPT_RT, which directly expresses the constraint that we cannot take a sleeping lock when preemption is disabled. This encompasses the previous checks for NMI and hard IRQ contexts while also catching cases where preemption is disabled. | medium |
| CVE-2026-23133 | In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: fix dma_free_coherent() pointer dma_alloc_coherent() allocates a DMA mapped buffer and stores the addresses in XXX_unaligned fields. Those should be reused when freeing the buffer rather than the aligned addresses. | high |
| CVE-2026-23132 | In the Linux kernel, the following vulnerability has been resolved: drm/bridge: synopsys: dw-dp: fix error paths of dw_dp_bind Fix several issues in dw_dp_bind() error handling: 1. Missing return after drm_bridge_attach() failure - the function continued execution instead of returning an error. 2. Resource leak: drm_dp_aux_register() is not a devm function, so drm_dp_aux_unregister() must be called on all error paths after aux registration succeeds. This affects errors from: - drm_bridge_attach() - phy_init() - devm_add_action_or_reset() - platform_get_irq() - devm_request_threaded_irq() 3. Bug fix: platform_get_irq() returns the IRQ number or a negative error code, but the error path was returning ERR_PTR(ret) instead of ERR_PTR(dp->irq). Use a goto label for cleanup to ensure consistent error handling. | medium |
| CVE-2026-23131 | In the Linux kernel, the following vulnerability has been resolved: platform/x86: hp-bioscfg: Fix kobject warnings for empty attribute names The hp-bioscfg driver attempts to register kobjects with empty names when the HP BIOS returns attributes with empty name strings. This causes multiple kernel warnings: kobject: (00000000135fb5e6): attempted to be registered with empty name! WARNING: CPU: 14 PID: 3336 at lib/kobject.c:219 kobject_add_internal+0x2eb/0x310 Add validation in hp_init_bios_buffer_attribute() to check if the attribute name is empty after parsing it from the WMI buffer. If empty, log a debug message and skip registration of that attribute, allowing the module to continue processing other valid attributes. | medium |
| CVE-2026-23130 | In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix dead lock while flushing management frames Commit [1] converted the management transmission work item into a wiphy work. Since a wiphy work can only run under wiphy lock protection, a race condition happens in below scenario: 1. a management frame is queued for transmission. 2. ath12k_mac_op_flush() gets called to flush pending frames associated with the hardware (i.e, vif being NULL). Then in ath12k_mac_flush() the process waits for the transmission done. 3. Since wiphy lock has been taken by the flush process, the transmission work item has no chance to run, hence the dead lock. >From user view, this dead lock results in below issue: wlp8s0: authenticate with xxxxxx (local address=xxxxxx) wlp8s0: send auth to xxxxxx (try 1/3) wlp8s0: authenticate with xxxxxx (local address=xxxxxx) wlp8s0: send auth to xxxxxx (try 1/3) wlp8s0: authenticated wlp8s0: associate with xxxxxx (try 1/3) wlp8s0: aborting association with xxxxxx by local choice (Reason: 3=DEAUTH_LEAVING) ath12k_pci 0000:08:00.0: failed to flush mgmt transmit queue, mgmt pkts pending 1 The dead lock can be avoided by invoking wiphy_work_flush() to proactively run the queued work item. Note actually it is already present in ath12k_mac_op_flush(), however it does not protect the case where vif being NULL. Hence move it ahead to cover this case as well. Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00302-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1.115823.3 | medium |
| CVE-2026-23129 | In the Linux kernel, the following vulnerability has been resolved: dpll: Prevent duplicate registrations Modify the internal registration helpers dpll_xa_ref_{dpll,pin}_add() to reject duplicate registration attempts. Previously, if a caller attempted to register the same pin multiple times (with the same ops, priv, and cookie) on the same device, the core silently increments the reference count and return success. This behavior is incorrect because if the caller makes these duplicate registrations then for the first one dpll_pin_registration is allocated and for others the associated dpll_pin_ref.refcount is incremented. During the first unregistration the associated dpll_pin_registration is freed and for others WARN is fired. Fix this by updating the logic to return `-EEXIST` if a matching registration is found to enforce a strict "register once" policy. | high |
| CVE-2026-23127 | In the Linux kernel, the following vulnerability has been resolved: perf: Fix refcount warning on event->mmap_count increment When calling refcount_inc(&event->mmap_count) inside perf_mmap_rb(), the following warning is triggered: refcount_t: addition on 0; use-after-free. WARNING: lib/refcount.c:25 PoC: struct perf_event_attr attr = {0}; int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0); mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); int victim = syscall(__NR_perf_event_open, &attr, 0, -1, fd, PERF_FLAG_FD_OUTPUT); mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, victim, 0); This occurs when creating a group member event with the flag PERF_FLAG_FD_OUTPUT. The group leader should be mmap-ed and then mmap-ing the event triggers the warning. Since the event has copied the output_event in perf_event_set_output(), event->rb is set. As a result, perf_mmap_rb() calls refcount_inc(&event->mmap_count) when event->mmap_count = 0. Disallow the case when event->mmap_count = 0. This also prevents two events from updating the same user_page. | high |
| CVE-2026-23126 | In the Linux kernel, the following vulnerability has been resolved: netdevsim: fix a race issue related to the operation on bpf_bound_progs list The netdevsim driver lacks a protection mechanism for operations on the bpf_bound_progs list. When the nsim_bpf_create_prog() performs list_add_tail, it is possible that nsim_bpf_destroy_prog() is simultaneously performs list_del. Concurrent operations on the list may lead to list corruption and trigger a kernel crash as follows: [ 417.290971] kernel BUG at lib/list_debug.c:62! [ 417.290983] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 417.290992] CPU: 10 PID: 168 Comm: kworker/10:1 Kdump: loaded Not tainted 6.19.0-rc5 #1 [ 417.291003] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 417.291007] Workqueue: events bpf_prog_free_deferred [ 417.291021] RIP: 0010:__list_del_entry_valid_or_report+0xa7/0xc0 [ 417.291034] Code: a8 ff 0f 0b 48 89 fe 48 89 ca 48 c7 c7 48 a1 eb ae e8 ed fb a8 ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 80 a1 eb ae e8 d9 fb a8 ff <0f> 0b 48 89 d1 48 c7 c7 d0 a1 eb ae 48 89 f2 48 89 c6 e8 c2 fb a8 [ 417.291040] RSP: 0018:ffffb16a40807df8 EFLAGS: 00010246 [ 417.291046] RAX: 000000000000006d RBX: ffff8e589866f500 RCX: 0000000000000000 [ 417.291051] RDX: 0000000000000000 RSI: ffff8e59f7b23180 RDI: ffff8e59f7b23180 [ 417.291055] RBP: ffffb16a412c9000 R08: 0000000000000000 R09: 0000000000000003 [ 417.291059] R10: ffffb16a40807c80 R11: ffffffffaf9edce8 R12: ffff8e594427ac20 [ 417.291063] R13: ffff8e59f7b44780 R14: ffff8e58800b7a05 R15: 0000000000000000 [ 417.291074] FS: 0000000000000000(0000) GS:ffff8e59f7b00000(0000) knlGS:0000000000000000 [ 417.291079] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 417.291083] CR2: 00007fc4083efe08 CR3: 00000001c3626006 CR4: 0000000000770ee0 [ 417.291088] PKRU: 55555554 [ 417.291091] Call Trace: [ 417.291096] <TASK> [ 417.291103] nsim_bpf_destroy_prog+0x31/0x80 [netdevsim] [ 417.291154] __bpf_prog_offload_destroy+0x2a/0x80 [ 417.291163] bpf_prog_dev_bound_destroy+0x6f/0xb0 [ 417.291171] bpf_prog_free_deferred+0x18e/0x1a0 [ 417.291178] process_one_work+0x18a/0x3a0 [ 417.291188] worker_thread+0x27b/0x3a0 [ 417.291197] ? __pfx_worker_thread+0x10/0x10 [ 417.291207] kthread+0xe5/0x120 [ 417.291214] ? __pfx_kthread+0x10/0x10 [ 417.291221] ret_from_fork+0x31/0x50 [ 417.291230] ? __pfx_kthread+0x10/0x10 [ 417.291236] ret_from_fork_asm+0x1a/0x30 [ 417.291246] </TASK> Add a mutex lock, to prevent simultaneous addition and deletion operations on the list. | medium |
| CVE-2026-23125 | In the Linux kernel, the following vulnerability has been resolved: sctp: move SCTP_CMD_ASSOC_SHKEY right after SCTP_CMD_PEER_INIT A null-ptr-deref was reported in the SCTP transmit path when SCTP-AUTH key initialization fails: ================================================================== KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f] CPU: 0 PID: 16 Comm: ksoftirqd/0 Tainted: G W 6.6.0 #2 RIP: 0010:sctp_packet_bundle_auth net/sctp/output.c:264 [inline] RIP: 0010:sctp_packet_append_chunk+0xb36/0x1260 net/sctp/output.c:401 Call Trace: sctp_packet_transmit_chunk+0x31/0x250 net/sctp/output.c:189 sctp_outq_flush_data+0xa29/0x26d0 net/sctp/outqueue.c:1111 sctp_outq_flush+0xc80/0x1240 net/sctp/outqueue.c:1217 sctp_cmd_interpreter.isra.0+0x19a5/0x62c0 net/sctp/sm_sideeffect.c:1787 sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline] sctp_do_sm+0x1a3/0x670 net/sctp/sm_sideeffect.c:1169 sctp_assoc_bh_rcv+0x33e/0x640 net/sctp/associola.c:1052 sctp_inq_push+0x1dd/0x280 net/sctp/inqueue.c:88 sctp_rcv+0x11ae/0x3100 net/sctp/input.c:243 sctp6_rcv+0x3d/0x60 net/sctp/ipv6.c:1127 The issue is triggered when sctp_auth_asoc_init_active_key() fails in sctp_sf_do_5_1C_ack() while processing an INIT_ACK. In this case, the command sequence is currently: - SCTP_CMD_PEER_INIT - SCTP_CMD_TIMER_STOP (T1_INIT) - SCTP_CMD_TIMER_START (T1_COOKIE) - SCTP_CMD_NEW_STATE (COOKIE_ECHOED) - SCTP_CMD_ASSOC_SHKEY - SCTP_CMD_GEN_COOKIE_ECHO If SCTP_CMD_ASSOC_SHKEY fails, asoc->shkey remains NULL, while asoc->peer.auth_capable and asoc->peer.peer_chunks have already been set by SCTP_CMD_PEER_INIT. This allows a DATA chunk with auth = 1 and shkey = NULL to be queued by sctp_datamsg_from_user(). Since command interpretation stops on failure, no COOKIE_ECHO should been sent via SCTP_CMD_GEN_COOKIE_ECHO. However, the T1_COOKIE timer has already been started, and it may enqueue a COOKIE_ECHO into the outqueue later. As a result, the DATA chunk can be transmitted together with the COOKIE_ECHO in sctp_outq_flush_data(), leading to the observed issue. Similar to the other places where it calls sctp_auth_asoc_init_active_key() right after sctp_process_init(), this patch moves the SCTP_CMD_ASSOC_SHKEY immediately after SCTP_CMD_PEER_INIT, before stopping T1_INIT and starting T1_COOKIE. This ensures that if shared key generation fails, authenticated DATA cannot be sent. It also allows the T1_INIT timer to retransmit INIT, giving the client another chance to process INIT_ACK and retry key setup. | medium |
| CVE-2026-23124 | In the Linux kernel, the following vulnerability has been resolved: ipv6: annotate data-race in ndisc_router_discovery() syzbot found that ndisc_router_discovery() could read and write in6_dev->ra_mtu without holding a lock [1] This looks fine, IFLA_INET6_RA_MTU is best effort. Add READ_ONCE()/WRITE_ONCE() to document the race. Note that we might also reject illegal MTU values (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) in a future patch. [1] BUG: KCSAN: data-race in ndisc_router_discovery / ndisc_router_discovery read to 0xffff888119809c20 of 4 bytes by task 25817 on cpu 1: ndisc_router_discovery+0x151d/0x1c90 net/ipv6/ndisc.c:1558 ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841 icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989 ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438 ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500 ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79 ... write to 0xffff888119809c20 of 4 bytes by task 25816 on cpu 0: ndisc_router_discovery+0x155a/0x1c90 net/ipv6/ndisc.c:1559 ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841 icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989 ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438 ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500 ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79 ... value changed: 0x00000000 -> 0xe5400659 | medium |
| CVE-2026-23123 | In the Linux kernel, the following vulnerability has been resolved: interconnect: debugfs: initialize src_node and dst_node to empty strings The debugfs_create_str() API assumes that the string pointer is either NULL or points to valid kmalloc() memory. Leaving the pointer uninitialized can cause problems. Initialize src_node and dst_node to empty strings before creating the debugfs entries to guarantee that reads and writes are safe. | medium |
| CVE-2026-23122 | In the Linux kernel, the following vulnerability has been resolved: igc: Reduce TSN TX packet buffer from 7KB to 5KB per queue The previous 7 KB per queue caused TX unit hangs under heavy timestamping load. Reducing to 5 KB avoids these hangs and matches the TSN recommendation in I225/I226 SW User Manual Section 7.5.4. The 8 KB "freed" by this change is currently unused. This reduction is not expected to impact throughput, as the i226 is PCIe-limited for small TSN packets rather than TX-buffer-limited. | medium |
| CVE-2026-23121 | In the Linux kernel, the following vulnerability has been resolved: mISDN: annotate data-race around dev->work dev->work can re read locklessly in mISDN_read() and mISDN_poll(). Add READ_ONCE()/WRITE_ONCE() annotations. BUG: KCSAN: data-race in mISDN_ioctl / mISDN_read write to 0xffff88812d848280 of 4 bytes by task 10864 on cpu 1: misdn_add_timer drivers/isdn/mISDN/timerdev.c:175 [inline] mISDN_ioctl+0x2fb/0x550 drivers/isdn/mISDN/timerdev.c:233 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xce/0x140 fs/ioctl.c:583 __x64_sys_ioctl+0x43/0x50 fs/ioctl.c:583 x64_sys_call+0x14b0/0x3000 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f read to 0xffff88812d848280 of 4 bytes by task 10857 on cpu 0: mISDN_read+0x1f2/0x470 drivers/isdn/mISDN/timerdev.c:112 do_loop_readv_writev fs/read_write.c:847 [inline] vfs_readv+0x3fb/0x690 fs/read_write.c:1020 do_readv+0xe7/0x210 fs/read_write.c:1080 __do_sys_readv fs/read_write.c:1165 [inline] __se_sys_readv fs/read_write.c:1162 [inline] __x64_sys_readv+0x45/0x50 fs/read_write.c:1162 x64_sys_call+0x2831/0x3000 arch/x86/include/generated/asm/syscalls_64.h:20 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f value changed: 0x00000000 -> 0x00000001 | high |
| CVE-2026-23120 | In the Linux kernel, the following vulnerability has been resolved: l2tp: avoid one data-race in l2tp_tunnel_del_work() We should read sk->sk_socket only when dealing with kernel sockets. syzbot reported the following data-race: BUG: KCSAN: data-race in l2tp_tunnel_del_work / sk_common_release write to 0xffff88811c182b20 of 8 bytes by task 5365 on cpu 0: sk_set_socket include/net/sock.h:2092 [inline] sock_orphan include/net/sock.h:2118 [inline] sk_common_release+0xae/0x230 net/core/sock.c:4003 udp_lib_close+0x15/0x20 include/net/udp.h:325 inet_release+0xce/0xf0 net/ipv4/af_inet.c:437 __sock_release net/socket.c:662 [inline] sock_close+0x6b/0x150 net/socket.c:1455 __fput+0x29b/0x650 fs/file_table.c:468 ____fput+0x1c/0x30 fs/file_table.c:496 task_work_run+0x131/0x1a0 kernel/task_work.c:233 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] __exit_to_user_mode_loop kernel/entry/common.c:44 [inline] exit_to_user_mode_loop+0x1fe/0x740 kernel/entry/common.c:75 __exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline] syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline] do_syscall_64+0x1e1/0x2b0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f read to 0xffff88811c182b20 of 8 bytes by task 827 on cpu 1: l2tp_tunnel_del_work+0x2f/0x1a0 net/l2tp/l2tp_core.c:1418 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0x4ce/0x9d0 kernel/workqueue.c:3340 worker_thread+0x582/0x770 kernel/workqueue.c:3421 kthread+0x489/0x510 kernel/kthread.c:463 ret_from_fork+0x149/0x290 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 value changed: 0xffff88811b818000 -> 0x0000000000000000 | medium |
| CVE-2026-2312 | The Media Library Folders plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 8.3.6 via the delete_maxgalleria_media() and maxgalleria_rename_image() functions due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with Author-level access and above, to delete or rename attachments owned by other users (including administrators). The rename flow also deletes all postmeta for the target attachment, causing data loss. | medium |
| CVE-2026-23119 | In the Linux kernel, the following vulnerability has been resolved: bonding: provide a net pointer to __skb_flow_dissect() After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect") we have to provide a net pointer to __skb_flow_dissect(), either via skb->dev, skb->sk, or a user provided pointer. In the following case, syzbot was able to cook a bare skb. WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053 Call Trace: <TASK> bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline] __bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157 bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline] bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline] bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515 xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388 bpf_prog_run_xdp include/net/xdp.h:700 [inline] bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421 bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390 bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703 __sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182 __do_sys_bpf kernel/bpf/syscall.c:6274 [inline] __se_sys_bpf kernel/bpf/syscall.c:6272 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94 | medium |
| CVE-2026-23118 | In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix data-race warning and potential load/store tearing Fix the following: BUG: KCSAN: data-race in rxrpc_peer_keepalive_worker / rxrpc_send_data_packet which is reporting an issue with the reads and writes to ->last_tx_at in: conn->peer->last_tx_at = ktime_get_seconds(); and: keepalive_at = peer->last_tx_at + RXRPC_KEEPALIVE_TIME; The lockless accesses to these to values aren't actually a problem as the read only needs an approximate time of last transmission for the purposes of deciding whether or not the transmission of a keepalive packet is warranted yet. Also, as ->last_tx_at is a 64-bit value, tearing can occur on a 32-bit arch. Fix both of these by switching to an unsigned int for ->last_tx_at and only storing the LSW of the time64_t. It can then be reconstructed at need provided no more than 68 years has elapsed since the last transmission. | medium |
| CVE-2026-23117 | In the Linux kernel, the following vulnerability has been resolved: ice: add missing ice_deinit_hw() in devlink reinit path devlink-reload results in ice_init_hw failed error, and then removing the ice driver causes a NULL pointer dereference. [ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16 ... [ +0.000001] Call Trace: [ +0.000003] <TASK> [ +0.000006] ice_unload+0x8f/0x100 [ice] [ +0.000081] ice_remove+0xba/0x300 [ice] Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but ice_devlink_reinit_up() still calls ice_init_hw(). Since the control queues are not uninitialized, ice_init_hw() fails with -EBUSY. Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with ice_init_hw() in ice_devlink_reinit_up(). | medium |
| CVE-2026-23116 | In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx8m-blk-ctrl: Remove separate rst and clk mask for 8mq vpu For i.MX8MQ platform, the ADB in the VPUMIX domain has no separate reset and clock enable bits, but is ungated and reset together with the VPUs. So we can't reset G1 or G2 separately, it may led to the system hang. Remove rst_mask and clk_mask of imx8mq_vpu_blk_ctl_domain_data. Let imx8mq_vpu_power_notifier() do really vpu reset. | high |
| CVE-2026-23115 | In the Linux kernel, the following vulnerability has been resolved: serial: Fix not set tty->port race condition Revert commit bfc467db60b7 ("serial: remove redundant tty_port_link_device()") because the tty_port_link_device() is not redundant: the tty->port has to be confured before we call uart_configure_port(), otherwise user-space can open console without TTY linked to the driver. This tty_port_link_device() was added explicitly to avoid this exact issue in commit fb2b90014d78 ("tty: link tty and port before configuring it as console"), so offending commit basically reverted the fix saying it is redundant without addressing the actual race condition presented there. Reproducible always as tty->port warning on Qualcomm SoC with most of devices disabled, so with very fast boot, and one serial device being the console: printk: legacy console [ttyMSM0] enabled printk: legacy console [ttyMSM0] enabled printk: legacy bootconsole [qcom_geni0] disabled printk: legacy bootconsole [qcom_geni0] disabled ------------[ cut here ]------------ tty_init_dev: ttyMSM driver does not set tty->port. This would crash the kernel. Fix the driver! WARNING: drivers/tty/tty_io.c:1414 at tty_init_dev.part.0+0x228/0x25c, CPU#2: systemd/1 Modules linked in: socinfo tcsrcc_eliza gcc_eliza sm3_ce fuse ipv6 CPU: 2 UID: 0 PID: 1 Comm: systemd Tainted: G S 6.19.0-rc4-next-20260108-00024-g2202f4d30aa8 #73 PREEMPT Tainted: [S]=CPU_OUT_OF_SPEC Hardware name: Qualcomm Technologies, Inc. Eliza (DT) ... tty_init_dev.part.0 (drivers/tty/tty_io.c:1414 (discriminator 11)) (P) tty_open (arch/arm64/include/asm/atomic_ll_sc.h:95 (discriminator 3) drivers/tty/tty_io.c:2073 (discriminator 3) drivers/tty/tty_io.c:2120 (discriminator 3)) chrdev_open (fs/char_dev.c:411) do_dentry_open (fs/open.c:962) vfs_open (fs/open.c:1094) do_open (fs/namei.c:4634) path_openat (fs/namei.c:4793) do_filp_open (fs/namei.c:4820) do_sys_openat2 (fs/open.c:1391 (discriminator 3)) ... Starting Network Name Resolution... Apparently the flow with this small Yocto-based ramdisk user-space is: driver (qcom_geni_serial.c): user-space: ============================ =========== qcom_geni_serial_probe() uart_add_one_port() serial_core_register_port() serial_core_add_one_port() uart_configure_port() register_console() | | open console | ... | tty_init_dev() | driver->ports[idx] is NULL | tty_port_register_device_attr_serdev() tty_port_link_device() <- set driver->ports[idx] | medium |
| CVE-2026-23114 | In the Linux kernel, the following vulnerability has been resolved: arm64/fpsimd: ptrace: Fix SVE writes on !SME systems When SVE is supported but SME is not supported, a ptrace write to the NT_ARM_SVE regset can place the tracee into an invalid state where (non-streaming) SVE register data is stored in FP_STATE_SVE format but TIF_SVE is clear. This can result in a later warning from fpsimd_restore_current_state(), e.g. WARNING: CPU: 0 PID: 7214 at arch/arm64/kernel/fpsimd.c:383 fpsimd_restore_current_state+0x50c/0x748 When this happens, fpsimd_restore_current_state() will set TIF_SVE, placing the task into the correct state. This occurs before any other check of TIF_SVE can possibly occur, as other checks of TIF_SVE only happen while the FPSIMD/SVE/SME state is live. Thus, aside from the warning, there is no functional issue. This bug was introduced during rework to error handling in commit: 9f8bf718f2923 ("arm64/fpsimd: ptrace: Gracefully handle errors") ... where the setting of TIF_SVE was moved into a block which is only executed when system_supports_sme() is true. Fix this by removing the system_supports_sme() check. This ensures that TIF_SVE is set for (SVE-formatted) writes to NT_ARM_SVE, at the cost of unconditionally manipulating the tracee's saved svcr value. The manipulation of svcr is benign and inexpensive, and we already do similar elsewhere (e.g. during signal handling), so I don't think it's worth guarding this with system_supports_sme() checks. Aside from the above, there is no functional change. The 'type' argument to sve_set_common() is only set to ARM64_VEC_SME (in ssve_set())) when system_supports_sme(), so the ARM64_VEC_SME case in the switch statement is still unreachable when !system_supports_sme(). When CONFIG_ARM64_SME=n, the only caller of sve_set_common() is sve_set(), and the compiler can constant-fold for the case where type is ARM64_VEC_SVE, removing the logic for other cases. | high |
| CVE-2026-23113 | In the Linux kernel, the following vulnerability has been resolved: io_uring/io-wq: check IO_WQ_BIT_EXIT inside work run loop Currently this is checked before running the pending work. Normally this is quite fine, as work items either end up blocking (which will create a new worker for other items), or they complete fairly quickly. But syzbot reports an issue where io-wq takes seemingly forever to exit, and with a bit of debugging, this turns out to be because it queues a bunch of big (2GB - 4096b) reads with a /dev/msr* file. Since this file type doesn't support ->read_iter(), loop_rw_iter() ends up handling them. Each read returns 16MB of data read, which takes 20 (!!) seconds. With a bunch of these pending, processing the whole chain can take a long time. Easily longer than the syzbot uninterruptible sleep timeout of 140 seconds. This then triggers a complaint off the io-wq exit path: INFO: task syz.4.135:6326 blocked for more than 143 seconds. Not tainted syzkaller #0 Blocked by coredump. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz.4.135 state:D stack:26824 pid:6326 tgid:6324 ppid:5957 task_flags:0x400548 flags:0x00080000 Call Trace: <TASK> context_switch kernel/sched/core.c:5256 [inline] __schedule+0x1139/0x6150 kernel/sched/core.c:6863 __schedule_loop kernel/sched/core.c:6945 [inline] schedule+0xe7/0x3a0 kernel/sched/core.c:6960 schedule_timeout+0x257/0x290 kernel/time/sleep_timeout.c:75 do_wait_for_common kernel/sched/completion.c:100 [inline] __wait_for_common+0x2fc/0x4e0 kernel/sched/completion.c:121 io_wq_exit_workers io_uring/io-wq.c:1328 [inline] io_wq_put_and_exit+0x271/0x8a0 io_uring/io-wq.c:1356 io_uring_clean_tctx+0x10d/0x190 io_uring/tctx.c:203 io_uring_cancel_generic+0x69c/0x9a0 io_uring/cancel.c:651 io_uring_files_cancel include/linux/io_uring.h:19 [inline] do_exit+0x2ce/0x2bd0 kernel/exit.c:911 do_group_exit+0xd3/0x2a0 kernel/exit.c:1112 get_signal+0x2671/0x26d0 kernel/signal.c:3034 arch_do_signal_or_restart+0x8f/0x7e0 arch/x86/kernel/signal.c:337 __exit_to_user_mode_loop kernel/entry/common.c:41 [inline] exit_to_user_mode_loop+0x8c/0x540 kernel/entry/common.c:75 __exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline] syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline] do_syscall_64+0x4ee/0xf80 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fa02738f749 RSP: 002b:00007fa0281ae0e8 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca RAX: fffffffffffffe00 RBX: 00007fa0275e6098 RCX: 00007fa02738f749 RDX: 0000000000000000 RSI: 0000000000000080 RDI: 00007fa0275e6098 RBP: 00007fa0275e6090 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fa0275e6128 R14: 00007fff14e4fcb0 R15: 00007fff14e4fd98 There's really nothing wrong here, outside of processing these reads will take a LONG time. However, we can speed up the exit by checking the IO_WQ_BIT_EXIT inside the io_worker_handle_work() loop, as syzbot will exit the ring after queueing up all of these reads. Then once the first item is processed, io-wq will simply cancel the rest. That should avoid syzbot running into this complaint again. | high |
| CVE-2026-2144 | The Magic Login Mail or QR Code plugin for WordPress is vulnerable to Privilege Escalation in all versions up to, and including, 2.05. This is due to the plugin storing the magic login QR code image with a predictable, static filename (QR_Code.png) in the publicly accessible WordPress uploads directory during the email sending process. The file is only deleted after wp_mail() completes, creating an exploitable race condition window. This makes it possible for unauthenticated attackers to trigger a login link request for any user, including administrators, and then exploit the race condition between QR code file creation and deletion to obtain the login URL encoded in the QR code, thereby gaining unauthorized access to the targeted user's account. | high |
| CVE-2026-2027 | The AMP Enhancer – Compatibility Layer for Official AMP Plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the AMP Custom CSS setting in all versions up to, and including, 1.0.49 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. | medium |
| CVE-2026-2024 | The PhotoStack Gallery plugin for WordPress is vulnerable to SQL Injection via the 'postid' parameter in all versions up to, and including, 0.4.1 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. | high |
| CVE-2026-2022 | The Smart Forms plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the 'rednao_smart_forms_get_campaigns' AJAX action in all versions up to, and including, 2.6.99. This makes it possible for authenticated attackers, with Subscriber-level access and above, to retrieve donation campaign data including campaign IDs and names. | medium |
| CVE-2026-1988 | The Flexi Product Slider and Grid for WooCommerce plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 1.0.5 via the `flexipsg_carousel` shortcode. This is due to the `theme` parameter being directly concatenated into a file path without proper sanitization or validation, allowing directory traversal. This makes it possible for authenticated attackers, with Contributor-level access and above, to include and execute arbitrary PHP files on the server via the `theme` parameter granted they can create posts with shortcodes. | high |
| CVE-2026-1987 | The Scheduler Widget plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 0.1.6. This is due to the `scheduler_widget_ajax_save_event()` function lacking proper authorization checks and ownership verification when updating events. This makes it possible for authenticated attackers, with Subscriber-level access and above, to modify any event in the scheduler via the `id` parameter granted they have knowledge of the event ID. | medium |
| CVE-2026-1985 | The Press3D plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 3D Model Gutenberg block in all versions up to, and including, 1.0.2. This is due to the plugin failing to sanitize and validate the URL scheme when storing link URLs for 3D model blocks, allowing `javascript:` URLs. This makes it possible for authenticated attackers, with Author-level access and above, to inject arbitrary web scripts in pages via the link URL parameter that will execute whenever a user clicks on the 3D model. | medium |
| CVE-2026-1983 | The SEATT: Simple Event Attendance plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.5.0. This is due to missing nonce validation on the event deletion functionality. This makes it possible for unauthenticated attackers to delete arbitrary events via a forged request granted they can trick an administrator into performing an action such as clicking on a link. | medium |
| CVE-2026-1944 | The CallbackKiller service widget plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the cbk_save() function in all versions up to, and including, 1.2. This makes it possible for unauthenticated attackers to modify the plugin's site ID settings via the 'cbk_save_v1' AJAX action. | medium |
| CVE-2026-1939 | The Percent to Infograph plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the `percent_to_graph` shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2026-1932 | The Appointment Booking Calendar Plugin – Bookr plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the update-appointment REST API endpoint in all versions up to, and including, 1.0.2. This makes it possible for unauthenticated attackers to modify the status of any appointment. | medium |
| CVE-2026-1915 | The Simple Plyr plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'poster' parameter in the 'plyr' shortcode in all versions up to, and including, 0.0.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2026-1912 | The Citations tools plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'code' parameter in the 'ctdoi' shortcode in all versions up to, and including, 0.3.2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2026-1910 | The UpMenu – Online ordering for restaurants plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'lang' attribute of the 'upmenu-menu' shortcode in all versions up to, and including, 3.1. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2026-1905 | The Sphere Manager plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'width' parameter in the 'show_sphere_image' shortcode in all versions up to, and including, 1.0.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2026-1904 | The Simple Wp colorfull Accordion plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'title' parameter in the 'accordion' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |