Newest CVEs

IDDescriptionSeverity
CVE-2025-39986In the Linux kernel, the following vulnerability has been resolved: can: sun4i_can: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the sun4i_can driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)) to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks: 1. the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities). 2. the length is a valid CAN XL length. And so, sun4ican_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN frame. This can result in a buffer overflow. The driver will consume cf->len as-is with no further checks on this line: dlc = cf->len; Here, cf->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs a couple line below when doing: for (i = 0; i < dlc; i++) writel(cf->data[i], priv->base + (dreg + i * 4)); Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU. By fixing the root cause, this prevents the buffer overflow.
high
CVE-2025-39985In the Linux kernel, the following vulnerability has been resolved: can: mcba_usb: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the mcba_usb driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)) to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks: 1. the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities). 2. the length is a valid CAN XL length. And so, mcba_usb_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN frame. This can result in a buffer overflow. The driver will consume cf->len as-is with no further checks on these lines: usb_msg.dlc = cf->len; memcpy(usb_msg.data, cf->data, usb_msg.dlc); Here, cf->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs! Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU. By fixing the root cause, this prevents the buffer overflow.
high
CVE-2025-39984In the Linux kernel, the following vulnerability has been resolved: net: tun: Update napi->skb after XDP process The syzbot report a UAF issue: BUG: KASAN: slab-use-after-free in skb_reset_mac_header include/linux/skbuff.h:3150 [inline] BUG: KASAN: slab-use-after-free in napi_frags_skb net/core/gro.c:723 [inline] BUG: KASAN: slab-use-after-free in napi_gro_frags+0x6e/0x1030 net/core/gro.c:758 Read of size 8 at addr ffff88802ef22c18 by task syz.0.17/6079 CPU: 0 UID: 0 PID: 6079 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 skb_reset_mac_header include/linux/skbuff.h:3150 [inline] napi_frags_skb net/core/gro.c:723 [inline] napi_gro_frags+0x6e/0x1030 net/core/gro.c:758 tun_get_user+0x28cb/0x3e20 drivers/net/tun.c:1920 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> Allocated by task 6079: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 unpoison_slab_object mm/kasan/common.c:330 [inline] __kasan_mempool_unpoison_object+0xa0/0x170 mm/kasan/common.c:558 kasan_mempool_unpoison_object include/linux/kasan.h:388 [inline] napi_skb_cache_get+0x37b/0x6d0 net/core/skbuff.c:295 __alloc_skb+0x11e/0x2d0 net/core/skbuff.c:657 napi_alloc_skb+0x84/0x7d0 net/core/skbuff.c:811 napi_get_frags+0x69/0x140 net/core/gro.c:673 tun_napi_alloc_frags drivers/net/tun.c:1404 [inline] tun_get_user+0x77c/0x3e20 drivers/net/tun.c:1784 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6079: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:243 [inline] __kasan_slab_free+0x5b/0x80 mm/kasan/common.c:275 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2422 [inline] slab_free mm/slub.c:4695 [inline] kmem_cache_free+0x18f/0x400 mm/slub.c:4797 skb_pp_cow_data+0xdd8/0x13e0 net/core/skbuff.c:969 netif_skb_check_for_xdp net/core/dev.c:5390 [inline] netif_receive_generic_xdp net/core/dev.c:5431 [inline] do_xdp_generic+0x699/0x11a0 net/core/dev.c:5499 tun_get_user+0x2523/0x3e20 drivers/net/tun.c:1872 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f After commit e6d5dbdd20aa ("xdp: add multi-buff support for xdp running in generic mode"), the original skb may be freed in skb_pp_cow_data() when XDP program was attached, which was allocated in tun_napi_alloc_frags(). However, the napi->skb still point to the original skb, update it after XDP process.
high
CVE-2025-39983In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: Fix UAF in hci_conn_tx_dequeue This fixes the following UAF caused by not properly locking hdev when processing HCI_EV_NUM_COMP_PKTS: BUG: KASAN: slab-use-after-free in hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036 Read of size 4 at addr ffff8880740f0940 by task kworker/u11:0/54 CPU: 1 UID: 0 PID: 54 Comm: kworker/u11:0 Not tainted 6.16.0-rc7 #3 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Workqueue: hci1 hci_rx_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x230 mm/kasan/report.c:480 kasan_report+0x118/0x150 mm/kasan/report.c:593 hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036 hci_num_comp_pkts_evt+0x1c8/0xa50 net/bluetooth/hci_event.c:4404 hci_event_func net/bluetooth/hci_event.c:7477 [inline] hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 54: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939 le_conn_complete_evt+0x3d6/0x1220 net/bluetooth/hci_event.c:5628 hci_le_enh_conn_complete_evt+0x189/0x470 net/bluetooth/hci_event.c:5794 hci_event_func net/bluetooth/hci_event.c:7474 [inline] hci_event_packet+0x78c/0x1200 net/bluetooth/hci_event.c:7531 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 Freed by task 9572: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2381 [inline] slab_free mm/slub.c:4643 [inline] kfree+0x18e/0x440 mm/slub.c:4842 device_release+0x9c/0x1c0 kobject_cleanup lib/kobject.c:689 [inline] kobject_release lib/kobject.c:720 [inline] kref_put include/linux/kref.h:65 [inline] kobject_put+0x22b/0x480 lib/kobject.c:737 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline] hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173 hci_abort_conn_sync+0x5d1/0xdf0 net/bluetooth/hci_sync.c:5689 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
high
CVE-2025-39982In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: Fix UAF in hci_acl_create_conn_sync This fixes the following UFA in hci_acl_create_conn_sync where a connection still pending is command submission (conn->state == BT_OPEN) maybe freed, also since this also can happen with the likes of hci_le_create_conn_sync fix it as well: BUG: KASAN: slab-use-after-free in hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861 Write of size 2 at addr ffff88805ffcc038 by task kworker/u11:2/9541 CPU: 1 UID: 0 PID: 9541 Comm: kworker/u11:2 Not tainted 6.16.0-rc7 #3 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Workqueue: hci3 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x230 mm/kasan/report.c:480 kasan_report+0x118/0x150 mm/kasan/report.c:593 hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 123736: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939 hci_conn_add_unset net/bluetooth/hci_conn.c:1051 [inline] hci_connect_acl+0x16c/0x4e0 net/bluetooth/hci_conn.c:1634 pair_device+0x418/0xa70 net/bluetooth/mgmt.c:3556 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:727 sock_write_iter+0x258/0x330 net/socket.c:1131 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x54b/0xa90 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 103680: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2381 [inline] slab_free mm/slub.c:4643 [inline] kfree+0x18e/0x440 mm/slub.c:4842 device_release+0x9c/0x1c0 kobject_cleanup lib/kobject.c:689 [inline] kobject_release lib/kobject.c:720 [inline] kref_put include/linux/kref.h:65 [inline] kobject_put+0x22b/0x480 lib/kobject.c:737 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline] hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199 hci_event_func net/bluetooth/hci_event.c:7477 [inline] hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/sour ---truncated---
high
CVE-2025-39981In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix possible UAFs This attemps to fix possible UAFs caused by struct mgmt_pending being freed while still being processed like in the following trace, in order to fix mgmt_pending_valid is introduce and use to check if the mgmt_pending hasn't been removed from the pending list, on the complete callbacks it is used to check and in addtion remove the cmd from the list while holding mgmt_pending_lock to avoid TOCTOU problems since if the cmd is left on the list it can still be accessed and freed. BUG: KASAN: slab-use-after-free in mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223 Read of size 8 at addr ffff8880709d4dc0 by task kworker/u11:0/55 CPU: 0 UID: 0 PID: 55 Comm: kworker/u11:0 Not tainted 6.16.4 #2 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x711/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16.4/arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 12210: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4364 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] mgmt_pending_new+0x65/0x1e0 net/bluetooth/mgmt_util.c:269 mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 __add_adv_patterns_monitor+0x130/0x200 net/bluetooth/mgmt.c:5247 add_adv_patterns_monitor+0x214/0x360 net/bluetooth/mgmt.c:5364 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:729 sock_write_iter+0x258/0x330 net/socket.c:1133 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 12221: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2381 [inline] slab_free mm/slub.c:4648 [inline] kfree+0x18e/0x440 mm/slub.c:4847 mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 __mgmt_power_off+0x169/0x350 net/bluetooth/mgmt.c:9444 hci_dev_close_sync+0x754/0x1330 net/bluetooth/hci_sync.c:5290 hci_dev_do_close net/bluetooth/hci_core.c:501 [inline] hci_dev_close+0x108/0x200 net/bluetooth/hci_core.c:526 sock_do_ioctl+0xd9/0x300 net/socket.c:1192 sock_ioctl+0x576/0x790 net/socket.c:1313 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf ---truncated---
high
CVE-2025-39980In the Linux kernel, the following vulnerability has been resolved: nexthop: Forbid FDB status change while nexthop is in a group The kernel forbids the creation of non-FDB nexthop groups with FDB nexthops: # ip nexthop add id 1 via 192.0.2.1 fdb # ip nexthop add id 2 group 1 Error: Non FDB nexthop group cannot have fdb nexthops. And vice versa: # ip nexthop add id 3 via 192.0.2.2 dev dummy1 # ip nexthop add id 4 group 3 fdb Error: FDB nexthop group can only have fdb nexthops. However, as long as no routes are pointing to a non-FDB nexthop group, the kernel allows changing the type of a nexthop from FDB to non-FDB and vice versa: # ip nexthop add id 5 via 192.0.2.2 dev dummy1 # ip nexthop add id 6 group 5 # ip nexthop replace id 5 via 192.0.2.2 fdb # echo $? 0 This configuration is invalid and can result in a NPD [1] since FDB nexthops are not associated with a nexthop device: # ip route add 198.51.100.1/32 nhid 6 # ping 198.51.100.1 Fix by preventing nexthop FDB status change while the nexthop is in a group: # ip nexthop add id 7 via 192.0.2.2 dev dummy1 # ip nexthop add id 8 group 7 # ip nexthop replace id 7 via 192.0.2.2 fdb Error: Cannot change nexthop FDB status while in a group. [1] BUG: kernel NULL pointer dereference, address: 00000000000003c0 [...] Oops: Oops: 0000 [#1] SMP CPU: 6 UID: 0 PID: 367 Comm: ping Not tainted 6.17.0-rc6-virtme-gb65678cacc03 #1 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014 RIP: 0010:fib_lookup_good_nhc+0x1e/0x80 [...] Call Trace: <TASK> fib_table_lookup+0x541/0x650 ip_route_output_key_hash_rcu+0x2ea/0x970 ip_route_output_key_hash+0x55/0x80 __ip4_datagram_connect+0x250/0x330 udp_connect+0x2b/0x60 __sys_connect+0x9c/0xd0 __x64_sys_connect+0x18/0x20 do_syscall_64+0xa4/0x2a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53
medium
CVE-2025-39979In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fs, fix UAF in flow counter release Fix a kernel trace [1] caused by releasing an HWS action of a local flow counter in mlx5_cmd_hws_delete_fte(), where the HWS action refcount and mutex were not initialized and the counter struct could already be freed when deleting the rule. Fix it by adding the missing initializations and adding refcount for the local flow counter struct. [1] Kernel log: Call Trace: <TASK> dump_stack_lvl+0x34/0x48 mlx5_fs_put_hws_action.part.0.cold+0x21/0x94 [mlx5_core] mlx5_fc_put_hws_action+0x96/0xad [mlx5_core] mlx5_fs_destroy_fs_actions+0x8b/0x152 [mlx5_core] mlx5_cmd_hws_delete_fte+0x5a/0xa0 [mlx5_core] del_hw_fte+0x1ce/0x260 [mlx5_core] mlx5_del_flow_rules+0x12d/0x240 [mlx5_core] ? ttwu_queue_wakelist+0xf4/0x110 mlx5_ib_destroy_flow+0x103/0x1b0 [mlx5_ib] uverbs_free_flow+0x20/0x50 [ib_uverbs] destroy_hw_idr_uobject+0x1b/0x50 [ib_uverbs] uverbs_destroy_uobject+0x34/0x1a0 [ib_uverbs] uobj_destroy+0x3c/0x80 [ib_uverbs] ib_uverbs_run_method+0x23e/0x360 [ib_uverbs] ? uverbs_finalize_object+0x60/0x60 [ib_uverbs] ib_uverbs_cmd_verbs+0x14f/0x2c0 [ib_uverbs] ? do_tty_write+0x1a9/0x270 ? file_tty_write.constprop.0+0x98/0xc0 ? new_sync_write+0xfc/0x190 ib_uverbs_ioctl+0xd7/0x160 [ib_uverbs] __x64_sys_ioctl+0x87/0xc0 do_syscall_64+0x59/0x90
medium
CVE-2025-39978In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix potential use after free in otx2_tc_add_flow() This code calls kfree_rcu(new_node, rcu) and then dereferences "new_node" and then dereferences it on the next line. Two lines later, we take a mutex so I don't think this is an RCU safe region. Re-order it to do the dereferences before queuing up the free.
high
CVE-2025-39977In the Linux kernel, the following vulnerability has been resolved: futex: Prevent use-after-free during requeue-PI syzbot managed to trigger the following race: T1 T2 futex_wait_requeue_pi() futex_do_wait() schedule() futex_requeue() futex_proxy_trylock_atomic() futex_requeue_pi_prepare() requeue_pi_wake_futex() futex_requeue_pi_complete() /* preempt */ * timeout/ signal wakes T1 * futex_requeue_pi_wakeup_sync() // Q_REQUEUE_PI_LOCKED futex_hash_put() // back to userland, on stack futex_q is garbage /* back */ wake_up_state(q->task, TASK_NORMAL); In this scenario futex_wait_requeue_pi() is able to leave without using futex_q::lock_ptr for synchronization. This can be prevented by reading futex_q::task before updating the futex_q::requeue_state. A reference on the task_struct is not needed because requeue_pi_wake_futex() is invoked with a spinlock_t held which implies a RCU read section. Even if T1 terminates immediately after, the task_struct will remain valid during T2's wake_up_state(). A READ_ONCE on futex_q::task before futex_requeue_pi_complete() is enough because it ensures that the variable is read before the state is updated. Read futex_q::task before updating the requeue state, use it for the following wakeup.
medium
CVE-2025-39976In the Linux kernel, the following vulnerability has been resolved: futex: Use correct exit on failure from futex_hash_allocate_default() copy_process() uses the wrong error exit path from futex_hash_allocate_default(). After exiting from futex_hash_allocate_default(), neither tasklist_lock nor siglock has been acquired. The exit label bad_fork_core_free unlocks both of these locks which is wrong. The next exit label, bad_fork_cancel_cgroup, is the correct exit. sched_cgroup_fork() did not allocate any resources that need to freed. Use bad_fork_cancel_cgroup on error exit from futex_hash_allocate_default().
medium
CVE-2025-39975In the Linux kernel, the following vulnerability has been resolved: smb: client: fix wrong index reference in smb2_compound_op() In smb2_compound_op(), the loop that processes each command's response uses wrong indices when accessing response bufferes. This incorrect indexing leads to improper handling of command results. Also, if incorrectly computed index is greather than or equal to MAX_COMPOUND, it can cause out-of-bounds accesses.
high
CVE-2025-39974In the Linux kernel, the following vulnerability has been resolved: tracing/osnoise: Fix slab-out-of-bounds in _parse_integer_limit() When config osnoise cpus by write() syscall, the following KASAN splat may be observed: BUG: KASAN: slab-out-of-bounds in _parse_integer_limit+0x103/0x130 Read of size 1 at addr ffff88810121e3a1 by task test/447 CPU: 1 UID: 0 PID: 447 Comm: test Not tainted 6.17.0-rc6-dirty #288 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x55/0x70 print_report+0xcb/0x610 kasan_report+0xb8/0xf0 _parse_integer_limit+0x103/0x130 bitmap_parselist+0x16d/0x6f0 osnoise_cpus_write+0x116/0x2d0 vfs_write+0x21e/0xcc0 ksys_write+0xee/0x1c0 do_syscall_64+0xa8/0x2a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> This issue can be reproduced by below code: const char *cpulist = "1"; int fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY); write(fd, cpulist, strlen(cpulist)); Function bitmap_parselist() was called to parse cpulist, it require that the parameter 'buf' must be terminated with a '\0' or '\n'. Fix this issue by adding a '\0' to 'buf' in osnoise_cpus_write().
high
CVE-2025-39973In the Linux kernel, the following vulnerability has been resolved: i40e: add validation for ring_len param The `ring_len` parameter provided by the virtual function (VF) is assigned directly to the hardware memory context (HMC) without any validation. To address this, introduce an upper boundary check for both Tx and Rx queue lengths. The maximum number of descriptors supported by the hardware is 8k-32. Additionally, enforce alignment constraints: Tx rings must be a multiple of 8, and Rx rings must be a multiple of 32.
high
CVE-2025-39972In the Linux kernel, the following vulnerability has been resolved: i40e: fix idx validation in i40e_validate_queue_map Ensure idx is within range of active/initialized TCs when iterating over vf->ch[idx] in i40e_validate_queue_map().
medium
CVE-2025-39971In the Linux kernel, the following vulnerability has been resolved: i40e: fix idx validation in config queues msg Ensure idx is within range of active/initialized TCs when iterating over vf->ch[idx] in i40e_vc_config_queues_msg().
high
CVE-2025-39970In the Linux kernel, the following vulnerability has been resolved: i40e: fix input validation logic for action_meta Fix condition to check 'greater or equal' to prevent OOB dereference.
medium
CVE-2025-39969In the Linux kernel, the following vulnerability has been resolved: i40e: fix validation of VF state in get resources VF state I40E_VF_STATE_ACTIVE is not the only state in which VF is actually active so it should not be used to determine if a VF is allowed to obtain resources. Use I40E_VF_STATE_RESOURCES_LOADED that is set only in i40e_vc_get_vf_resources_msg() and cleared during reset.
high
CVE-2025-39968In the Linux kernel, the following vulnerability has been resolved: i40e: add max boundary check for VF filters There is no check for max filters that VF can request. Add it.
medium
CVE-2025-39967In the Linux kernel, the following vulnerability has been resolved: fbcon: fix integer overflow in fbcon_do_set_font Fix integer overflow vulnerabilities in fbcon_do_set_font() where font size calculations could overflow when handling user-controlled font parameters. The vulnerabilities occur when: 1. CALC_FONTSZ(h, pitch, charcount) performs h * pith * charcount multiplication with user-controlled values that can overflow. 2. FONT_EXTRA_WORDS * sizeof(int) + size addition can also overflow 3. This results in smaller allocations than expected, leading to buffer overflows during font data copying. Add explicit overflow checking using check_mul_overflow() and check_add_overflow() kernel helpers to safety validate all size calculations before allocation.
high
CVE-2025-39966In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix race during abort for file descriptors fput() doesn't actually call file_operations release() synchronously, it puts the file on a work queue and it will be released eventually. This is normally fine, except for iommufd the file and the iommufd_object are tied to gether. The file has the object as it's private_data and holds a users refcount, while the object is expected to remain alive as long as the file is. When the allocation of a new object aborts before installing the file it will fput() the file and then go on to immediately kfree() the obj. This causes a UAF once the workqueue completes the fput() and tries to decrement the users refcount. Fix this by putting the core code in charge of the file lifetime, and call __fput_sync() during abort to ensure that release() is called before kfree. __fput_sync() is a bit too tricky to open code in all the object implementations. Instead the objects tell the core code where the file pointer is and the core will take care of the life cycle. If the object is successfully allocated then the file will hold a users refcount and the iommufd_object cannot be destroyed. It is worth noting that close(); ioctl(IOMMU_DESTROY); doesn't have an issue because close() is already using a synchronous version of fput(). The UAF looks like this: BUG: KASAN: slab-use-after-free in iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376 Write of size 4 at addr ffff888059c97804 by task syz.0.46/6164 CPU: 0 UID: 0 PID: 6164 Comm: syz.0.46 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x100/0x1b0 mm/kasan/generic.c:189 instrument_atomic_read_write include/linux/instrumented.h:96 [inline] atomic_fetch_sub_release include/linux/atomic/atomic-instrumented.h:400 [inline] __refcount_dec include/linux/refcount.h:455 [inline] refcount_dec include/linux/refcount.h:476 [inline] iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376 __fput+0x402/0xb70 fs/file_table.c:468 task_work_run+0x14d/0x240 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x41c/0x4c0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f
high
CVE-2025-11501The Dynamically Display Posts plugin for WordPress is vulnerable to SQL Injection via the 'tax_query' parameter in all versions up to, and including, 1.1 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
high
CVE-2025-11161The WPBakery Page Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the vc_custom_heading shortcode in all versions up to, and including, 8.6.1. This is due to insufficient restriction of allowed HTML tags and improper sanitization of user-supplied attributes in the font_container parameter. This makes it possible for authenticated attackers with contributor-level access or higher to inject arbitrary web scripts in posts that will execute whenever a user accesses an injected page via the vc_custom_heading shortcode with malicious tag and text attributes granted they have access to use WPBakery shortcodes.
medium
CVE-2025-11160The WPBakery Page Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the Custom JS module in all versions up to, and including, 8.6.1. This is due to insufficient input sanitization and output escaping of user-supplied JavaScript code in the Custom JS module. This makes it possible for authenticated attackers with contributor-level access or higher to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page via the WPBakery Page Builder Custom JS module granted they have access to the WPBakery editor for post types.
medium
CVE-2025-8561The Ova Advent plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's shortcodes in all versions up to, and including, 1.1.7 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
medium
CVE-2025-6042The Lisfinity Core - Lisfinity Core plugin used for pebas® Lisfinity WordPress theme plugin for WordPress is vulnerable to privilege escalation in all versions up to, and including, 1.4.0. This is due to the plugin assigning the editor role by default. While limitations with respect to capabilities are put in place, use of the API is not restricted. This vulnerability can be leveraged together with CVE-2025-6038 to obtain admin privileges.
high
CVE-2025-55080In Eclipse ThreadX before 6.4.3, when memory protection is enabled, syscall parameters verification wasn't enough, allowing an attacker to obtain an arbitrary memory read/write.
high
CVE-2025-31702A vulnerability exists in certain Dahua embedded products. Third-party malicious attacker with obtained normal user credentials could exploit the vulnerability to access certain data which are restricted to admin privileges, such as system-sensitive files through specific HTTP request. This may cause tampering with admin password, leading to privilege escalation. Systems with only admin account are not affected.
medium
CVE-2025-26861RemoteCall Remote Support Program (for Operator) versions prior to 5.3.0 contain an uncontrolled search path element vulnerability. If a crafted DLL is placed in the same folder with the affected product, it may cause an arbitrary code execution.
high
CVE-2025-26860RemoteCall Remote Support Program (for Operator) versions prior to 5.1.0 contain an uncontrolled search path element vulnerability. If a crafted DLL is placed in the same folder with the affected product, it may cause an arbitrary code execution.
high
CVE-2025-26859RemoteView PC Application Console versions prior to 6.0.2 contain an uncontrolled search path element vulnerability. If a crafted DLL is placed in the same folder with the affected product, it may cause an arbitrary code execution.
high
CVE-2025-11176The Quick Featured Images plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 13.7.2 via the qfi_set_thumbnail and qfi_delete_thumbnail AJAX actions due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with Author-level access and above, to change or remove featured images of other user's posts.
medium
CVE-2025-10406The BlindMatrix e-Commerce WordPress plugin before 3.1 does not validate some shortcode attributes before using them to generate paths passed to include function/s, allowing any authenticated users, such as contributors, to perform LFI attacks.
medium
CVE-2025-55079In Eclipse ThreadX before version 6.4.3, the thread module has a setting of maximum priority. In some cases the check of that maximum priority wasn't performed, allowing, as a result, to obtain a thread with higher priority than expected and causing a possible denial of service.
medium
CVE-2025-62448Rejected reason: Not used
No Score
CVE-2025-62447Rejected reason: Not used
No Score
CVE-2025-62446Rejected reason: Not used
No Score
CVE-2025-62445Rejected reason: Not used
No Score
CVE-2025-62444Rejected reason: Not used
No Score
CVE-2025-62443Rejected reason: Not used
No Score
CVE-2025-62442Rejected reason: Not used
No Score
CVE-2025-62441Rejected reason: Not used
No Score
CVE-2025-62440Rejected reason: Not used
No Score
CVE-2025-11746The XStore theme for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 9.5.4 via theet_ajax_required_plugins_popup() function. This makes it possible for authenticated attackers, with Subscriber-level access and above, to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included.
high
CVE-2025-54278Bridge versions 14.1.8, 15.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
medium
CVE-2025-54268Bridge versions 14.1.8, 15.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
high
CVE-2024-13991Huijietong Cloud Video Platform contains a path traversal vulnerability that allows an unauthenticated attacker can supply arbitrary file paths to the `fullPath` parameter of the `/fileDownload?action=downloadBackupFile` endpoint and retrieve files from the server filesystem. VulnCheck has observed this vulnerability being exploited in the wild.
high
CVE-2023-7311BYTEVALUE Intelligent Flow Control Router contains a command injection vulnerability via the /goform/webRead/open endpoint. The `path` parameter is not properly validated and is echoed into a shell context, allowing an attacker to inject and execute arbitrary shell commands on the device. Successful exploitation can lead to writing backdoors, privilege escalation on the host, and full compromise of the router and its management functions. VulnCheck has observed this vulnerability being targeted by the RondoDox botnet campaign.
critical
CVE-2023-7305SmartBI V8, V9, and V10 contain an unrestricted file upload vulnerability via the RMIServlet request handling logic. Under certain configurations or usage patterns, attackers can send specially crafted requests that cause the application to perform sensitive operations or execute arbitrary code on the host. The vendor released a fix in July 2023 to address the underlying flaw. VulnCheck has observed this vulnerability being exploited in the wild.
critical
CVE-2023-7304Ruijie RG-UAC Application Management Gateway contains a command injection vulnerability via the 'nmc_sync.php' interface. An unauthenticated attacker able to reach the affected endpoint can inject shell commands via crafted request data, causing the application to execute arbitrary commands on the host. Successful exploitation can yield full control of the application process and may lead to system-level access depending on the service privileges. VulnCheck has observed this vulnerability being targeted by the RondoDox botnet campaign.
critical