| CVE-2022-50577 | In the Linux kernel, the following vulnerability has been resolved: ima: Fix memory leak in __ima_inode_hash() Commit f3cc6b25dcc5 ("ima: always measure and audit files in policy") lets measurement or audit happen even if the file digest cannot be calculated. As a result, iint->ima_hash could have been allocated despite ima_collect_measurement() returning an error. Since ima_hash belongs to a temporary inode metadata structure, declared at the beginning of __ima_inode_hash(), just add a kfree() call if ima_collect_measurement() returns an error different from -ENOMEM (in that case, ima_hash should not have been allocated). | medium |
| CVE-2022-50576 | In the Linux kernel, the following vulnerability has been resolved: serial: pch: Fix PCI device refcount leak in pch_request_dma() As comment of pci_get_slot() says, it returns a pci_device with its refcount increased. The caller must decrement the reference count by calling pci_dev_put(). Since 'dma_dev' is only used to filter the channel in filter(), we can call pci_dev_put() before exiting from pch_request_dma(). Add the missing pci_dev_put() for the normal and error path. | high |
| CVE-2022-50575 | In the Linux kernel, the following vulnerability has been resolved: xen/privcmd: Fix a possible warning in privcmd_ioctl_mmap_resource() As 'kdata.num' is user-controlled data, if user tries to allocate memory larger than(>=) MAX_ORDER, then kcalloc() will fail, it creates a stack trace and messes up dmesg with a warning. Call trace: -> privcmd_ioctl --> privcmd_ioctl_mmap_resource Add __GFP_NOWARN in order to avoid too large allocation warning. This is detected by static analysis using smatch. | medium |
| CVE-2022-50574 | In the Linux kernel, the following vulnerability has been resolved: drm/omap: dss: Fix refcount leak bugs In dss_init_ports() and __dss_uninit_ports(), we should call of_node_put() for the reference returned by of_graph_get_port_by_id() in fail path or when it is not used anymore. | high |
| CVE-2022-50573 | In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7915: fix mt7915_rate_txpower_get() resource leaks Coverity message: variable "buf" going out of scope leaks the storage. Addresses-Coverity-ID: 1527799 ("Resource leaks") | medium |
| CVE-2022-50572 | In the Linux kernel, the following vulnerability has been resolved: ASoC: audio-graph-card: fix refcount leak of cpu_ep in __graph_for_each_link() The of_get_next_child() returns a node with refcount incremented, and decrements the refcount of prev. So in the error path of the while loop, of_node_put() needs be called for cpu_ep. | medium |
| CVE-2022-50571 | In the Linux kernel, the following vulnerability has been resolved: btrfs: call __btrfs_remove_free_space_cache_locked on cache load failure Now that lockdep is staying enabled through our entire CI runs I started seeing the following stack in generic/475 ------------[ cut here ]------------ WARNING: CPU: 1 PID: 2171864 at fs/btrfs/discard.c:604 btrfs_discard_update_discardable+0x98/0xb0 CPU: 1 PID: 2171864 Comm: kworker/u4:0 Not tainted 5.19.0-rc8+ #789 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Workqueue: btrfs-cache btrfs_work_helper RIP: 0010:btrfs_discard_update_discardable+0x98/0xb0 RSP: 0018:ffffb857c2f7bad0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8c85c605c200 RCX: 0000000000000001 RDX: 0000000000000000 RSI: ffffffff86807c5b RDI: ffffffff868a831e RBP: ffff8c85c4c54000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8c85c66932f0 R11: 0000000000000001 R12: ffff8c85c3899010 R13: ffff8c85d5be4f40 R14: ffff8c85c4c54000 R15: ffff8c86114bfa80 FS: 0000000000000000(0000) GS:ffff8c863bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2e7f168160 CR3: 000000010289a004 CR4: 0000000000370ee0 Call Trace: __btrfs_remove_free_space_cache+0x27/0x30 load_free_space_cache+0xad2/0xaf0 caching_thread+0x40b/0x650 ? lock_release+0x137/0x2d0 btrfs_work_helper+0xf2/0x3e0 ? lock_is_held_type+0xe2/0x140 process_one_work+0x271/0x590 ? process_one_work+0x590/0x590 worker_thread+0x52/0x3b0 ? process_one_work+0x590/0x590 kthread+0xf0/0x120 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 This is the code ctl = block_group->free_space_ctl; discard_ctl = &block_group->fs_info->discard_ctl; lockdep_assert_held(&ctl->tree_lock); We have a temporary free space ctl for loading the free space cache in order to avoid having allocations happening while we're loading the cache. When we hit an error we free it all up, however this also calls btrfs_discard_update_discardable, which requires block_group->free_space_ctl->tree_lock to be held. However this is our temporary ctl so this lock isn't held. Fix this by calling __btrfs_remove_free_space_cache_locked instead so that we only clean up the entries and do not mess with the discardable stats. | medium |
| CVE-2022-50570 | In the Linux kernel, the following vulnerability has been resolved: platform/chrome: fix memory corruption in ioctl If "s_mem.bytes" is larger than the buffer size it leads to memory corruption. | high |
| CVE-2022-50569 | In the Linux kernel, the following vulnerability has been resolved: xfrm: Update ipcomp_scratches with NULL when freed Currently if ipcomp_alloc_scratches() fails to allocate memory ipcomp_scratches holds obsolete address. So when we try to free the percpu scratches using ipcomp_free_scratches() it tries to vfree non existent vm area. Described below: static void * __percpu *ipcomp_alloc_scratches(void) { ... scratches = alloc_percpu(void *); if (!scratches) return NULL; ipcomp_scratches does not know about this allocation failure. Therefore holding the old obsolete address. ... } So when we free, static void ipcomp_free_scratches(void) { ... scratches = ipcomp_scratches; Assigning obsolete address from ipcomp_scratches if (!scratches) return; for_each_possible_cpu(i) vfree(*per_cpu_ptr(scratches, i)); Trying to free non existent page, causing warning: trying to vfree existent vm area. ... } Fix this breakage by updating ipcomp_scrtches with NULL when scratches is freed | medium |
| CVE-2022-50568 | In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_hid: fix f_hidg lifetime vs cdev The embedded struct cdev does not have its lifetime correctly tied to the enclosing struct f_hidg, so there is a use-after-free if /dev/hidgN is held open while the gadget is deleted. This can readily be replicated with libusbgx's example programs (for conciseness - operating directly via configfs is equivalent): gadget-hid exec 3<> /dev/hidg0 gadget-vid-pid-remove exec 3<&- Pull the existing device up in to struct f_hidg and make use of the cdev_device_{add,del}() helpers. This changes the lifetime of the device object to match struct f_hidg, but note that it is still added and deleted at the same time. | high |
| CVE-2022-50567 | In the Linux kernel, the following vulnerability has been resolved: fs: jfs: fix shift-out-of-bounds in dbAllocAG Syzbot found a crash : UBSAN: shift-out-of-bounds in dbAllocAG. The underlying bug is the missing check of bmp->db_agl2size. The field can be greater than 64 and trigger the shift-out-of-bounds. Fix this bug by adding a check of bmp->db_agl2size in dbMount since this field is used in many following functions. The upper bound for this field is L2MAXL2SIZE - L2MAXAG, thanks for the help of Dave Kleikamp. Note that, for maintenance, I reorganized error handling code of dbMount. | medium |
| CVE-2022-50566 | In the Linux kernel, the following vulnerability has been resolved: mtd: Fix device name leak when register device failed in add_mtd_device() There is a kmemleak when register device failed: unreferenced object 0xffff888101aab550 (size 8): comm "insmod", pid 3922, jiffies 4295277753 (age 925.408s) hex dump (first 8 bytes): 6d 74 64 30 00 88 ff ff mtd0.... backtrace: [<00000000bde26724>] __kmalloc_node_track_caller+0x4e/0x150 [<000000003c32b416>] kvasprintf+0xb0/0x130 [<000000001f7a8f15>] kobject_set_name_vargs+0x2f/0xb0 [<000000006e781163>] dev_set_name+0xab/0xe0 [<00000000e30d0c78>] add_mtd_device+0x4bb/0x700 [<00000000f3d34de7>] mtd_device_parse_register+0x2ac/0x3f0 [<00000000c0d88488>] 0xffffffffa0238457 [<00000000b40d0922>] 0xffffffffa02a008f [<0000000023d17b9d>] do_one_initcall+0x87/0x2a0 [<00000000770f6ca6>] do_init_module+0xdf/0x320 [<000000007b6768fe>] load_module+0x2f98/0x3330 [<00000000346bed5a>] __do_sys_finit_module+0x113/0x1b0 [<00000000674c2290>] do_syscall_64+0x35/0x80 [<000000004c6a8d97>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 If register device failed, should call put_device() to give up the reference. | medium |
| CVE-2022-50565 | In the Linux kernel, the following vulnerability has been resolved: wifi: plfxlc: fix potential memory leak in __lf_x_usb_enable_rx() urbs does not be freed in exception paths in __lf_x_usb_enable_rx(). That will trigger memory leak. To fix it, add kfree() for urbs within "error" label. Compile tested only. | medium |
| CVE-2022-50564 | In the Linux kernel, the following vulnerability has been resolved: s390/netiucv: Fix return type of netiucv_tx() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/s390/net/netiucv.c:1854:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict] .ndo_start_xmit = netiucv_tx, ^~~~~~~~~~ ->ndo_start_xmit() in 'struct net_device_ops' expects a return type of 'netdev_tx_t', not 'int'. Adjust the return type of netiucv_tx() to match the prototype's to resolve the warning and potential CFI failure, should s390 select ARCH_SUPPORTS_CFI_CLANG in the future. Additionally, while in the area, remove a comment block that is no longer relevant. | high |
| CVE-2022-50563 | In the Linux kernel, the following vulnerability has been resolved: dm thin: Fix UAF in run_timer_softirq() When dm_resume() and dm_destroy() are concurrent, it will lead to UAF, as follows: BUG: KASAN: use-after-free in __run_timers+0x173/0x710 Write of size 8 at addr ffff88816d9490f0 by task swapper/0/0 <snip> Call Trace: <IRQ> dump_stack_lvl+0x73/0x9f print_report.cold+0x132/0xaa2 _raw_spin_lock_irqsave+0xcd/0x160 __run_timers+0x173/0x710 kasan_report+0xad/0x110 __run_timers+0x173/0x710 __asan_store8+0x9c/0x140 __run_timers+0x173/0x710 call_timer_fn+0x310/0x310 pvclock_clocksource_read+0xfa/0x250 kvm_clock_read+0x2c/0x70 kvm_clock_get_cycles+0xd/0x20 ktime_get+0x5c/0x110 lapic_next_event+0x38/0x50 clockevents_program_event+0xf1/0x1e0 run_timer_softirq+0x49/0x90 __do_softirq+0x16e/0x62c __irq_exit_rcu+0x1fa/0x270 irq_exit_rcu+0x12/0x20 sysvec_apic_timer_interrupt+0x8e/0xc0 One of the concurrency UAF can be shown as below: use free do_resume | __find_device_hash_cell | dm_get | atomic_inc(&md->holders) | | dm_destroy | __dm_destroy | if (!dm_suspended_md(md)) | atomic_read(&md->holders) | msleep(1) dm_resume | __dm_resume | dm_table_resume_targets | pool_resume | do_waker #add delay work | dm_put | atomic_dec(&md->holders) | | dm_table_destroy | pool_dtr | __pool_dec | __pool_destroy | destroy_workqueue | kfree(pool) # free pool time out __do_softirq run_timer_softirq # pool has already been freed This can be easily reproduced using: 1. create thin-pool 2. dmsetup suspend pool 3. dmsetup resume pool 4. dmsetup remove_all # Concurrent with 3 The root cause of this UAF bug is that dm_resume() adds timer after dm_destroy() skips cancelling the timer because of suspend status. After timeout, it will call run_timer_softirq(), however pool has already been freed. The concurrency UAF bug will happen. Therefore, cancelling timer again in __pool_destroy(). | high |
| CVE-2022-50562 | In the Linux kernel, the following vulnerability has been resolved: tpm: acpi: Call acpi_put_table() to fix memory leak The start and length of the event log area are obtained from TPM2 or TCPA table, so we call acpi_get_table() to get the ACPI information, but the acpi_get_table() should be coupled with acpi_put_table() to release the ACPI memory, add the acpi_put_table() properly to fix the memory leak. While we are at it, remove the redundant empty line at the end of the tpm_read_log_acpi(). | medium |
| CVE-2022-50561 | In the Linux kernel, the following vulnerability has been resolved: iio: fix memory leak in iio_device_register_eventset() When iio_device_register_sysfs_group() returns failed, iio_device_register_eventset() needs to free attrs array. Otherwise, kmemleak would scan & report memory leak as below: unreferenced object 0xffff88810a1cc3c0 (size 32): comm "100-i2c-vcnl302", pid 728, jiffies 4295052307 (age 156.027s) backtrace: __kmalloc+0x46/0x1b0 iio_device_register_eventset at drivers/iio/industrialio-event.c:541 __iio_device_register at drivers/iio/industrialio-core.c:1959 __devm_iio_device_register at drivers/iio/industrialio-core.c:2040 | medium |
| CVE-2022-50560 | In the Linux kernel, the following vulnerability has been resolved: drm/meson: explicitly remove aggregate driver at module unload time Because component_master_del wasn't being called when unloading the meson_drm module, the aggregate device would linger forever in the global aggregate_devices list. That means when unloading and reloading the meson_dw_hdmi module, component_add would call into try_to_bring_up_aggregate_device and find the unbound meson_drm aggregate device. This would in turn dereference some of the aggregate_device's struct entries which point to memory automatically freed by the devres API when unbinding the aggregate device from meson_drv_unbind, and trigger an use-after-free bug: [ +0.000014] ============================================================= [ +0.000007] BUG: KASAN: use-after-free in find_components+0x468/0x500 [ +0.000017] Read of size 8 at addr ffff000006731688 by task modprobe/2536 [ +0.000018] CPU: 4 PID: 2536 Comm: modprobe Tainted: G C O 5.19.0-rc6-lrmbkasan+ #1 [ +0.000010] Hardware name: Hardkernel ODROID-N2Plus (DT) [ +0.000008] Call trace: [ +0.000005] dump_backtrace+0x1ec/0x280 [ +0.000011] show_stack+0x24/0x80 [ +0.000007] dump_stack_lvl+0x98/0xd4 [ +0.000010] print_address_description.constprop.0+0x80/0x520 [ +0.000011] print_report+0x128/0x260 [ +0.000007] kasan_report+0xb8/0xfc [ +0.000007] __asan_report_load8_noabort+0x3c/0x50 [ +0.000009] find_components+0x468/0x500 [ +0.000008] try_to_bring_up_aggregate_device+0x64/0x390 [ +0.000009] __component_add+0x1dc/0x49c [ +0.000009] component_add+0x20/0x30 [ +0.000008] meson_dw_hdmi_probe+0x28/0x34 [meson_dw_hdmi] [ +0.000013] platform_probe+0xd0/0x220 [ +0.000008] really_probe+0x3ac/0xa80 [ +0.000008] __driver_probe_device+0x1f8/0x400 [ +0.000008] driver_probe_device+0x68/0x1b0 [ +0.000008] __driver_attach+0x20c/0x480 [ +0.000009] bus_for_each_dev+0x114/0x1b0 [ +0.000007] driver_attach+0x48/0x64 [ +0.000009] bus_add_driver+0x390/0x564 [ +0.000007] driver_register+0x1a8/0x3e4 [ +0.000009] __platform_driver_register+0x6c/0x94 [ +0.000007] meson_dw_hdmi_platform_driver_init+0x30/0x1000 [meson_dw_hdmi] [ +0.000014] do_one_initcall+0xc4/0x2b0 [ +0.000008] do_init_module+0x154/0x570 [ +0.000010] load_module+0x1a78/0x1ea4 [ +0.000008] __do_sys_init_module+0x184/0x1cc [ +0.000008] __arm64_sys_init_module+0x78/0xb0 [ +0.000008] invoke_syscall+0x74/0x260 [ +0.000008] el0_svc_common.constprop.0+0xcc/0x260 [ +0.000009] do_el0_svc+0x50/0x70 [ +0.000008] el0_svc+0x68/0x1a0 [ +0.000009] el0t_64_sync_handler+0x11c/0x150 [ +0.000009] el0t_64_sync+0x18c/0x190 [ +0.000014] Allocated by task 902: [ +0.000007] kasan_save_stack+0x2c/0x5c [ +0.000009] __kasan_kmalloc+0x90/0xd0 [ +0.000007] __kmalloc_node+0x240/0x580 [ +0.000010] memcg_alloc_slab_cgroups+0xa4/0x1ac [ +0.000010] memcg_slab_post_alloc_hook+0xbc/0x4c0 [ +0.000008] kmem_cache_alloc_node+0x1d0/0x490 [ +0.000009] __alloc_skb+0x1d4/0x310 [ +0.000010] alloc_skb_with_frags+0x8c/0x620 [ +0.000008] sock_alloc_send_pskb+0x5ac/0x6d0 [ +0.000010] unix_dgram_sendmsg+0x2e0/0x12f0 [ +0.000010] sock_sendmsg+0xcc/0x110 [ +0.000007] sock_write_iter+0x1d0/0x304 [ +0.000008] new_sync_write+0x364/0x460 [ +0.000007] vfs_write+0x420/0x5ac [ +0.000008] ksys_write+0x19c/0x1f0 [ +0.000008] __arm64_sys_write+0x78/0xb0 [ +0.000007] invoke_syscall+0x74/0x260 [ +0.000008] el0_svc_common.constprop.0+0x1a8/0x260 [ +0.000009] do_el0_svc+0x50/0x70 [ +0.000007] el0_svc+0x68/0x1a0 [ +0.000008] el0t_64_sync_handler+0x11c/0x150 [ +0.000008] el0t_64_sync+0x18c/0x190 [ +0.000013] Freed by task 2509: [ +0.000008] kasan_save_stack+0x2c/0x5c [ +0.000007] kasan_set_track+0x2c/0x40 [ +0.000008] kasan_set_free_info+0x28/0x50 [ +0.000008] ____kasan_slab_free+0x128/0x1d4 [ +0.000008] __kasan_slab_free+0x18/0x24 [ +0.000007] slab_free_freelist_hook+0x108/0x230 [ +0.000010] ---truncated--- | medium |
| CVE-2022-50559 | In the Linux kernel, the following vulnerability has been resolved: clk: imx: scu: fix memleak on platform_device_add() fails No error handling is performed when platform_device_add() fails. Add error processing before return, and modified the return value. | medium |
| CVE-2022-50558 | In the Linux kernel, the following vulnerability has been resolved: regmap-irq: Use the new num_config_regs property in regmap_add_irq_chip_fwnode Commit faa87ce9196d ("regmap-irq: Introduce config registers for irq types") added the num_config_regs, then commit 9edd4f5aee84 ("regmap-irq: Deprecate type registers and virtual registers") suggested to replace num_type_reg with it. However, regmap_add_irq_chip_fwnode wasn't modified to use the new property. Later on, commit 255a03bb1bb3 ("ASoC: wcd9335: Convert irq chip to config regs") removed the old num_type_reg property from the WCD9335 driver's struct regmap_irq_chip, causing a null pointer dereference in regmap_irq_set_type when it tried to index d->type_buf as it was never allocated in regmap_add_irq_chip_fwnode: [ 39.199374] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 39.200006] Call trace: [ 39.200014] regmap_irq_set_type+0x84/0x1c0 [ 39.200026] __irq_set_trigger+0x60/0x1c0 [ 39.200040] __setup_irq+0x2f4/0x78c [ 39.200051] request_threaded_irq+0xe8/0x1a0 Use num_config_regs in regmap_add_irq_chip_fwnode instead of num_type_reg, and fall back to it if num_config_regs isn't defined to maintain backward compatibility. | medium |
| CVE-2022-50557 | In the Linux kernel, the following vulnerability has been resolved: pinctrl: thunderbay: fix possible memory leak in thunderbay_build_functions() The thunderbay_add_functions() will free memory of thunderbay_funcs when everything is ok, but thunderbay_funcs will not be freed when thunderbay_add_functions() fails, then there will be a memory leak, so we need to add kfree() when thunderbay_add_functions() fails to fix it. In addition, doing some cleaner works, moving kfree(funcs) from thunderbay_add_functions() to thunderbay_build_functions(). | medium |
| CVE-2022-50556 | In the Linux kernel, the following vulnerability has been resolved: drm: Fix potential null-ptr-deref due to drmm_mode_config_init() drmm_mode_config_init() will call drm_mode_create_standard_properties() and won't check the ret value. When drm_mode_create_standard_properties() failed due to alloc, property will be a NULL pointer and may causes the null-ptr-deref. Fix the null-ptr-deref by adding the ret value check. Found null-ptr-deref while testing insert module bochs: general protection fault, probably for non-canonical address 0xdffffc000000000c: 0000 [#1] SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000060-0x0000000000000067] CPU: 3 PID: 249 Comm: modprobe Not tainted 6.1.0-rc1+ #364 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010:drm_object_attach_property+0x73/0x3c0 [drm] Call Trace: <TASK> __drm_connector_init+0xb6c/0x1100 [drm] bochs_pci_probe.cold.11+0x4cb/0x7fe [bochs] pci_device_probe+0x17d/0x340 really_probe+0x1db/0x5d0 __driver_probe_device+0x1e7/0x250 driver_probe_device+0x4a/0x120 __driver_attach+0xcd/0x2c0 bus_for_each_dev+0x11a/0x1b0 bus_add_driver+0x3d7/0x500 driver_register+0x18e/0x320 do_one_initcall+0xc4/0x3e0 do_init_module+0x1b4/0x630 load_module+0x5dca/0x7230 __do_sys_finit_module+0x100/0x170 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7ff65af9f839 | medium |
| CVE-2025-11411 | NLnet Labs Unbound up to and including version 1.24.0 is vulnerable to possible domain hijack attacks. Promiscuous NS RRSets that complement positive DNS replies in the authority section can be used to trick resolvers to update their delegation information for the zone. Usually these RRSets are used to update the resolver's knowledge of the zone's name servers. A malicious actor can exploit the possible poisonous effect by injecting NS RRSets (and possibly their respective address records) in a reply. This could be done for example by trying to spoof a packet or fragmentation attacks. Unbound would then proceed to update the NS RRSet data it already has since the new data has enough trust for it, i.e., in-zone data for the delegation point. Unbound 1.24.1 includes a fix that scrubs unsolicited NS RRSets (and their respective address records) from replies mitigating the possible poison effect. | high |
| CVE-2025-11086 | The Academy LMS – WordPress LMS Plugin for Complete eLearning Solution plugin for WordPress is vulnerable to privilege escalation in all versions up to, and including, 3.3.7. This is due to the plugin not properly validating a user's role prior to registering a user via the Social Login addon. This makes it possible for unauthenticated attackers to update their role to Administrator when registering on the site. | high |
| CVE-2025-6833 | The All in One Time Clock Lite – Tracking Employee Time Has Never Been Easier plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 2.0 via the 'aio_time_clock_lite_js' AJAX action due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with subscriber access and above, to clock other users in and out. | medium |
| CVE-2025-11915 | Connection desynchronization between an HTTP proxy and the model backend. The fixes were rolled out for all proxies in front of impacted models by 2025-09-28. Users do not need to take any action. | medium |
| CVE-2025-41110 | Encrypted WiFi and SSH credentials were found in the Ghost Robotics Vision 60 v0.27.2 APK. This vulnerability allows an attacker to connect to the robot's WiFi and view all its data, as it runs on ROS 2 without default authentication. In addition, the attacker can connect via SSH and gain full control of the robot, which could cause physical damage to the robot itself or its environment. | high |
| CVE-2025-41109 | Ghost Robotics Vision 60 v0.27.2 includes, among its physical interfaces, three RJ45 connectors and a USB Type-C port. The vulnerability is due to the lack of authentication mechanisms when establishing connections through these ports. Specifically, with regard to network connectivity, the robot's internal router automatically assigns IP addresses to any device physically connected to it. An attacker could connect a WiFi access point under their control to gain access to the robot's network without needing the credentials for the deployed network. Once inside, the attacker can monitor all its data, as the robot runs on ROS 2 without authentication by default. | high |
| CVE-2025-41108 | The communication protocol implemented in Ghost Robotics Vision 60 v0.27.2 could allow an attacker to send commands to the robot from an external attack station, impersonating the control station (tablet) and gaining unauthorised full control of the robot. The absence of encryption and authentication mechanisms in the communication protocol allows an attacker to capture legitimate traffic between the robot and the controller, replicate it, and send any valid command to the robot from any attacking computer or device. The communication protocol used in this interface is based on MAVLink, a widely documented protocol, which increases the likelihood of attack. There are two methods for connecting to the robot remotely: Wi-Fi and 4G/LTE. | critical |
| CVE-2025-11952 | Stored Cross-site Scripting (XSS) in Oct8ne Chatbot v2.3. This vulnerability allows an attacker to execute JavaScript code in the victim's browser by injecting a malicious payload through the creation of a transcript that is sent by email. This vulnerability can be exploited to steal sensitive user data, such as session cookies, or to perform actions on behalf of the user, through /Records/SendSummaryMail. | medium |
| CVE-2025-11883 | The Responsive Progress Bar plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's rprogress shortcode in versions less than, or equal to, 1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11880 | The SM CountDown Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's smcountdown shortcode in versions less than, or equal to, 1.2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11878 | The ST Categories Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's st-categories shortcode in versions less than, or equal to, 1.0.0. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11872 | The Material Design Iconic Font Integration plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'mdiconic' shortcode in all versions up to, and including, 2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11870 | The Simple Business Data plugin for WordPress is vulnerable to Stored Cross-Site Scripting via 'simple_business_data' shortcode attributes in all versions up to, and including, 1.0.1. This is due to the plugin not properly sanitizing user input or escaping output when embedding the `type` attribute into the `class` attribute in rendered HTML. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11867 | The Bg Book Publisher plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the `book_author` post meta, rendered through the `[book_author]` shortcode, in all versions up to, and including, 1.25. This is due to the plugin not properly escaping the meta value before output. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11866 | The Photographers galleries plugin for WordPress is vulnerable to Stored Cross-Site Scripting via multiple shortcode attributes (`w`, `h`, `raw_css`, `look`, etc.) in all versions up to, and including, 1.1.8. This is due to the plugin not properly sanitizing user input or escaping output when inserting these values into HTML attributes and inline styles. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11834 | The WP AD Gallery plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'startindex' parameter of the ad-gallery shortcode in all versions up to, and including, 1.3. This is due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11830 | The WP Restaurant Listings plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'align' parameter of the restaurant_summary shortcode in all versions up to, and including, 1.0.2. This is due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11827 | The Oboxmedia Ads plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'before_widget' and 'after_widget' parameters of the oboxads-ad-widget shortcode in all versions up to, and including, 1.9.8. This is due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11825 | The Playerzbr plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'urlmeta' post meta field in all versions up to, and including, 1.6 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11824 | The Cinza Grid plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'cgrid_skin_content' post meta field in all versions up to, and including, 1.2.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11819 | The WP-Thumbnail plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'roboshot' shortcode in all versions up to, and including, 1.1. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11818 | The WP Responsive Meet The Team plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'wprm_team' shortcode in all versions up to, and including, 1.0.1. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11817 | The Simple Tableau Viz plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'tableau' shortcode in all versions up to, and including, 2.0. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11813 | The Responsive iframe GoogleMap plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'responsive_map' shortcode in all versions up to, and including, 1.0.2. This is due to insufficient input sanitization and output escaping on the 'width' and 'height' attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11811 | The Simple Youtube Shortcode plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'embed_youtube' shortcode in all versions up to, and including, 1.1.3. This is due to insufficient input sanitization and output escaping on the 'id' attribute. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11810 | The Print Button Shortcode plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'print-button' shortcode in all versions up to, and including, 1.0.1. This is due to insufficient input sanitization and output escaping on the 'target' attribute. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11809 | The WP-Force Images Download plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'wpfid' shortcode in all versions up to, and including, 1.8. This is due to insufficient input sanitization and output escaping on the 'class' attribute. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |
| CVE-2025-11807 | The Mixlr Shortcode plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'mixlr' shortcode in all versions up to, and including, 1.0.1. This is due to insufficient input sanitization and output escaping on the 'url' attribute. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | medium |