Newest CVEs

IDDescriptionSeverity
CVE-2025-61103FRRouting/frr from v4.0 through v10.4.1 was discovered to contain a NULL pointer dereference via the show_vty_ext_link_lan_adj_sid function at ospf_ext.c. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted OSPF packet.
high
CVE-2025-61043An out-of-bounds read vulnerability has been discovered in Monkey's Audio 11.31, specifically in the CAPECharacterHelper::GetUTF16FromUTF8 function. The issue arises from improper handling of the length of the input UTF-8 string, causing the function to read past the memory boundary. This vulnerability may result in a crash or expose sensitive data.
critical
CVE-2025-36085IBM Concert 1.0.0 through 2.0.0 Software is vulnerable to server-side request forgery (SSRF). This may allow an authenticated attacker to send unauthorized requests from the system, potentially leading to network enumeration or facilitating other attacks.
medium
CVE-2025-36083IBM Concert Software 1.0.0 through 2.0.0 could allow a local user to obtain sensitive information from buffers due to improper clearing of heap memory before release.
medium
CVE-2025-36081IBM Concert Software 1.0.0 through 2.0.0 could allow a user to modify system logs due to improper neutralization of log input.
medium
CVE-2025-34318IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the TLS_HOSTNAME, UPSTREAM_USER, UPSTREAM_PASSWORD, ADMIN_MAIL_ADDRESS, and ADMIN_PASSWORD parameters when adding a new DNS entry. When a user adds a DNS entry, the application issues an HTTP POST request to /cgi-bin/dns.cgi and these values are provided in the corresponding parameters. The values are stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected DNS configuration.
medium
CVE-2025-34317IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the TLS_HOSTNAME parameter when adding a new DNS entry. When a user adds a DNS entry, the application issues an HTTP POST request to /cgi-bin/dns.cgi and the TLS hostname is provided in the TLS_HOSTNAME parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected DNS configuration.
medium
CVE-2025-34316IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the txt_mailuser and txt_mailpass parameters when updating the mail server settings. When a user updates the mail server, the application issues an HTTP POST request to /cgi-bin/mail.cgi and the username and password are provided in the txt_mailuser and txt_mailpass parameters. The values of these parameters are stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected mail configuration.
medium
CVE-2025-34315IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the REMOTELOG_ADDR parameter when updating the remote syslog server address. When a user updates the Remote logging Syslog server, the application issues an HTTP POST request to /cgi-bin/logs.cgi/config.dat and the server address is provided in the REMOTELOG_ADDR parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected configuration page.
medium
CVE-2025-34314IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the SRC, DST, and COMMENT parameters when creating a time constraint rule. When a user adds a time constraint rule the application issues an HTTP POST request to /cgi-bin/urlfilter.cgi with the MODE parameter set to TIMECONSTRAINT and the source hostnames/IPs, destination, and remark provided in the SRC, DST, and COMMENT parameters respectively. The values of these parameters are stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected time constraint entry.
medium
CVE-2025-34313IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the QUOTA_USERS parameter when creating a user quota rule. When a user adds a new user quota rule the application issues an HTTP POST request to /cgi-bin/urlfilter.cgi with the MODE parameter set to USERQUOTA and the assigned user(s) provided in the QUOTA_USERS parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected quota entry.
medium
CVE-2025-34312IPFire versions prior to 2.29 (Core Update 198) contain a command injection vulnerability that allows an authenticated attacker to execute arbitrary commands as the 'nobody' user via the BE_NAME parameter when installing a blacklist. When a blacklist is installed the application issues an HTTP POST to /cgi-bin/urlfilter.cgi and interpolates the value of BE_NAME directly into a shell invocation without appropriate sanitation. Crafted input can inject shell metacharacters, leading to arbitrary command execution in the context of the 'nobody' user.
high
CVE-2025-34311IPFire versions prior to 2.29 (Core Update 198) contain a command injection vulnerability that allows an authenticated attacker to execute arbitrary commands as the user 'nobody' via multiple parameters when creating a Proxy report. When a user creates a Proxy report the application issues an HTTP POST to /cgi-bin/logs.cgi/calamaris.dat and reads the values of DAY_BEGIN, MONTH_BEGIN, YEAR_BEGIN, DAY_END, MONTH_END, YEAR_END, NUM_DOMAINS, PERF_INTERVAL, NUM_CONTENT, HIST_LEVEL, NUM_HOSTS, NUM_URLS, and BYTE_UNIT, which are interpolated directly into the shell invocation of the mkreport helper. Because these parameters are never sanitized for improper characters or constructs, a crafted POST can inject shell metacharacters into one or more fields, causing arbitrary commands to run with the privileges of the 'nobody' user.
high
CVE-2025-34310IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the INC_SPD, OUT_SPD, DEFCLASS_INC, and DEFCLASS_OUT parameters when updating Quality of Service (QoS) settings. When a user updates speeds or classes, the application issues an HTTP POST request to /cgi-bin/qos.cgi and the values for incoming/outgoing speeds and default classes are provided in the INC_SPD, OUT_SPD, DEFCLASS_INC, and DEFCLASS_OUT parameters. The values of these parameters are stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected QoS entries.
medium
CVE-2025-34309IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the SERVICE, LOGIN, and PASSWORD parameters when creating or editing a Dynamic DNS host. When a new Dynamic DNS host is added, the application issues an HTTP POST request to /cgi-bin/ddns.cgi and saves the values of the LOGIN, PASSWORD, and SERVICE parameters. The SERVICE value is displayed after the host entry is created, and the LOGIN and PASSWORD values are displayed when that host entry is edited. The values of these parameters are stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view or edit the affected Dynamic DNS entries.
medium
CVE-2025-34308IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the UPDATE_VALUE parameter when updating the default time synchronization settings. When the default values displayed on the Time Server page are updated, the application issues an HTTP POST request to /cgi-bin/time.cgi, and the synchronization value is provided in the UPDATE_VALUE parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected Time Server configuration page.
medium
CVE-2025-34307IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the pienumber parameter when updating the firewall country search defaults. When a user updates the default values for the firewall country search, the application issues an HTTP POST request to /cgi-bin/logs.cgi/firewalllogcountry.dat and the default number of countries to display is provided in the pienumber parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected firewall country search settings.
medium
CVE-2025-34306IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the pienumber parameter when updating the default firewall IP search values. When a user updates these defaults, the application issues an HTTP POST request to /cgi-bin/logs.cgi/firewalllogip.dat with the default number of IPs in the pienumber parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected page.
medium
CVE-2025-34305IPFire versions prior to 2.29 (Core Update 198) contain multiple stored cross-site scripting (XSS) vulnerabilities caused by a bug in the cleanhtml() function (/var/ipfire/header.pl) that fails to apply HTML-entity encoding to user input. When an authenticated user submits data to affected endpoints - for example, POST /cgi-bin/wakeonlan.cgi (CLIENT_COMMENT), /cgi-bin/dhcp.cgi (ADVOPT_DATA, FIX_REMARK, FIX_FILENAME, FIX_ROOTPATH), /cgi-bin/connscheduler.cgi (ACTION_COMMENT), /cgi-bin/dnsforward.cgi (REMARK), /cgi-bin/vpnmain.cgi (REMARK), or /cgi-bin/dns.cgi (REMARK) - the application calls escape() and HTML::Entities::encode_entities() but never assigns the sanitized result back to the output variable. The original unsanitized value is therefore stored and later rendered in the web interface without proper sanitation or encoding, allowing injected scripts to execute in the context of other users who view the affected entries.
medium
CVE-2025-34304IPFire versions prior to 2.29 (Core Update 198) contain a SQL injection vulnerability that allows an authenticated attacker to manipulate the SQL query used when viewing OpenVPN connection logs via the CONNECTION_NAME parameter. When viewing a range of OpenVPN connection logs, the application issues an HTTP POST request to the Request-URI /cgi-bin/logs.cgi/ovpnclients.dat and inserts the value of the CONNECTION_NAME parameter directly into the WHERE clause without proper sanitization or parameterization. The unsanitized value can alter the executed query and be used to disclose sensitive information from the database.
high
CVE-2025-34303IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the IGNORE_ENTRY_REMARK parameter when adding a whitelisted host. When a whitelisted host is added, an HTTP POST request is sent to the Request-URI /cgi-bin/ids.cgi and the remark for the entry is provided in the IGNORE_ENTRY_REMARK parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitization or encoding, allowing injected scripts to execute in the context of other users who view the affected whitelist entry.
medium
CVE-2025-34302IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code through the PROT parameter when creating a new service. When a user adds a service, the application issues an HTTP POST request with the ACTION parameter set to saveservice, and the protocol type is specified in the PROT parameter. The value of this parameter is stored and later rendered in the web interface without proper sanitization or encoding, allowing injected scripts to execute in the context of other users viewing the affected service entry.
medium
CVE-2025-34301IPFire versions prior to 2.29 (Core Update 198) contain a stored cross-site scripting (XSS) vulnerability that allows an authenticated attacker to inject arbitrary JavaScript code into the COUNTRY_CODE parameter when creating a location group. When a user adds a new location group, the application issues an HTTP POST request with the ACTION parameter set to savelocationgrp, and the value of the COUNTRY_CODE parameter determines the flag displayed for that group. The value of this parameter is stored and later rendered in the web interface without proper sanitization or encoding, allowing malicious scripts to be executed in the context of other users viewing the affected page.
medium
CVE-2025-53855An out-of-bounds write vulnerability exists in the XML parser functionality of GCC Productions Inc. Fade In 4.2.0. A specially crafted .fadein file can lead to an out-of-bounds write. An attacker can provide a malicious file to trigger this vulnerability.
high
CVE-2025-53814A use-after-free vulnerability exists in the XML parser functionality of GCC Productions Inc. Fade In 4.2.0. A specially crafted .xml file can lead to heap-based memory corruption. An attacker can provide a malicious file to trigger this vulnerability.
high
CVE-2025-12390A flaw was found in Keycloak. In Keycloak where a user can accidentally get access to another user's session if both use the same device and browser. This happens because Keycloak sometimes reuses session identifiers and doesn’t clean up properly during logout when browser cookies are missing. As a result, one user may receive tokens that belong to another user.
medium
CVE-2025-12380Starting with Firefox 142, it was possible for a compromised child process to trigger a use-after-free in the GPU or browser process using WebGPU-related IPC calls. This may have been usable to escape the child process sandbox. This vulnerability affects Firefox < 144.0.2.
critical
CVE-2025-12103A flaw was found in Red Hat Openshift AI Service. The TrustyAI component is granting all service accounts and users on a cluster permissions to get, list, watch any pod in any namespace on the cluster. TrustyAI is creating a role `trustyai-service-operator-lmeval-user-role` and a CRB `trustyai-service-operator-default-lmeval-user-rolebinding` which is being applied to `system:authenticated` making it so that every single user or service account can get a list of pods running in any namespace on the cluster Additionally users can access all `persistentvolumeclaims` and `lmevaljobs`
medium
CVE-2025-1038The “Diagnostics Tools” page of the web-based configuration utility does not properly validate user-controlled input, allowing an authenticated user with high privileges to inject commands into the command shell of the TropOS 4th Gen device. The injected commands can be exploited to execute several set-uid (SUID) applications to ultimately gain root access to the TropOS device.
high
CVE-2025-1037By making minor configuration changes to the TropOS 4th Gen device, an authenticated user with the ability to run user level shell commands can enable access via secure shell (SSH) to an unrestricted root shell. This is possible through abuse of a particular set of scripts and executables that allow for certain commands to be run as root from an unprivileged context.
high
CVE-2025-1036Command injection vulnerability exists in the “Logging” page of the web-based configuration utility. An authenticated user with low privileged network access for the configuration utility can execute arbitrary commands on the underlying OS to obtain root SSH access to the TropOS 4th Gen device.
high
CVE-2025-9313An unauthenticated user can connect to a publicly accessible database using arbitrary credentials. The system grants full access to the database by leveraging a previously authenticated connection through a "mmBackup" application. This flaw allows attackers to bypass authentication mechanisms and gain unauthorized access to database with sensitive data. This issue affects Asseco mMedica in versions before 11.9.5.
critical
CVE-2025-40082In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc() BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0xa71/0xb90 fs/hfsplus/unicode.c:186 Read of size 2 at addr ffff8880289ef218 by task syz.6.248/14290 CPU: 0 UID: 0 PID: 14290 Comm: syz.6.248 Not tainted 6.16.4 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1b0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x5f0 mm/kasan/report.c:482 kasan_report+0xca/0x100 mm/kasan/report.c:595 hfsplus_uni2asc+0xa71/0xb90 fs/hfsplus/unicode.c:186 hfsplus_listxattr+0x5b6/0xbd0 fs/hfsplus/xattr.c:738 vfs_listxattr+0xbe/0x140 fs/xattr.c:493 listxattr+0xee/0x190 fs/xattr.c:924 filename_listxattr fs/xattr.c:958 [inline] path_listxattrat+0x143/0x360 fs/xattr.c:988 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcb/0x4c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fe0e9fae16d Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fe0eae67f98 EFLAGS: 00000246 ORIG_RAX: 00000000000000c3 RAX: ffffffffffffffda RBX: 00007fe0ea205fa0 RCX: 00007fe0e9fae16d RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000200000000000 RBP: 00007fe0ea0480f0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fe0ea206038 R14: 00007fe0ea205fa0 R15: 00007fe0eae48000 </TASK> Allocated by task 14290: kasan_save_stack+0x24/0x50 mm/kasan/common.c:47 kasan_save_track+0x14/0x30 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4333 [inline] __kmalloc_noprof+0x219/0x540 mm/slub.c:4345 kmalloc_noprof include/linux/slab.h:909 [inline] hfsplus_find_init+0x95/0x1f0 fs/hfsplus/bfind.c:21 hfsplus_listxattr+0x331/0xbd0 fs/hfsplus/xattr.c:697 vfs_listxattr+0xbe/0x140 fs/xattr.c:493 listxattr+0xee/0x190 fs/xattr.c:924 filename_listxattr fs/xattr.c:958 [inline] path_listxattrat+0x143/0x360 fs/xattr.c:988 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcb/0x4c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f When hfsplus_uni2asc is called from hfsplus_listxattr, it actually passes in a struct hfsplus_attr_unistr*. The size of the corresponding structure is different from that of hfsplus_unistr, so the previous fix (94458781aee6) is insufficient. The pointer on the unicode buffer is still going beyond the allocated memory. This patch introduces two warpper functions hfsplus_uni2asc_xattr_str and hfsplus_uni2asc_str to process two unicode buffers, struct hfsplus_attr_unistr* and struct hfsplus_unistr* respectively. When ustrlen value is bigger than the allocated memory size, the ustrlen value is limited to an safe size.
high
CVE-2025-40081In the Linux kernel, the following vulnerability has been resolved: perf: arm_spe: Prevent overflow in PERF_IDX2OFF() Cast nr_pages to unsigned long to avoid overflow when handling large AUX buffer sizes (>= 2 GiB).
high
CVE-2025-40080In the Linux kernel, the following vulnerability has been resolved: nbd: restrict sockets to TCP and UDP Recently, syzbot started to abuse NBD with all kinds of sockets. Commit cf1b2326b734 ("nbd: verify socket is supported during setup") made sure the socket supported a shutdown() method. Explicitely accept TCP and UNIX stream sockets.
high
CVE-2025-40079In the Linux kernel, the following vulnerability has been resolved: riscv, bpf: Sign extend struct ops return values properly The ns_bpf_qdisc selftest triggers a kernel panic: Unable to handle kernel paging request at virtual address ffffffffa38dbf58 Current test_progs pgtable: 4K pagesize, 57-bit VAs, pgdp=0x00000001109cc000 [ffffffffa38dbf58] pgd=000000011fffd801, p4d=000000011fffd401, pud=000000011fffd001, pmd=0000000000000000 Oops [#1] Modules linked in: bpf_testmod(OE) xt_conntrack nls_iso8859_1 [...] [last unloaded: bpf_testmod(OE)] CPU: 1 UID: 0 PID: 23584 Comm: test_progs Tainted: G W OE 6.17.0-rc1-g2465bb83e0b4 #1 NONE Tainted: [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2024.01+dfsg-1ubuntu5.1 01/01/2024 epc : __qdisc_run+0x82/0x6f0 ra : __qdisc_run+0x6e/0x6f0 epc : ffffffff80bd5c7a ra : ffffffff80bd5c66 sp : ff2000000eecb550 gp : ffffffff82472098 tp : ff60000096895940 t0 : ffffffff8001f180 t1 : ffffffff801e1664 t2 : 0000000000000000 s0 : ff2000000eecb5d0 s1 : ff60000093a6a600 a0 : ffffffffa38dbee8 a1 : 0000000000000001 a2 : ff2000000eecb510 a3 : 0000000000000001 a4 : 0000000000000000 a5 : 0000000000000010 a6 : 0000000000000000 a7 : 0000000000735049 s2 : ffffffffa38dbee8 s3 : 0000000000000040 s4 : ff6000008bcda000 s5 : 0000000000000008 s6 : ff60000093a6a680 s7 : ff60000093a6a6f0 s8 : ff60000093a6a6ac s9 : ff60000093140000 s10: 0000000000000000 s11: ff2000000eecb9d0 t3 : 0000000000000000 t4 : 0000000000ff0000 t5 : 0000000000000000 t6 : ff60000093a6a8b6 status: 0000000200000120 badaddr: ffffffffa38dbf58 cause: 000000000000000d [<ffffffff80bd5c7a>] __qdisc_run+0x82/0x6f0 [<ffffffff80b6fe58>] __dev_queue_xmit+0x4c0/0x1128 [<ffffffff80b80ae0>] neigh_resolve_output+0xd0/0x170 [<ffffffff80d2daf6>] ip6_finish_output2+0x226/0x6c8 [<ffffffff80d31254>] ip6_finish_output+0x10c/0x2a0 [<ffffffff80d31446>] ip6_output+0x5e/0x178 [<ffffffff80d2e232>] ip6_xmit+0x29a/0x608 [<ffffffff80d6f4c6>] inet6_csk_xmit+0xe6/0x140 [<ffffffff80c985e4>] __tcp_transmit_skb+0x45c/0xaa8 [<ffffffff80c995fe>] tcp_connect+0x9ce/0xd10 [<ffffffff80d66524>] tcp_v6_connect+0x4ac/0x5e8 [<ffffffff80cc19b8>] __inet_stream_connect+0xd8/0x318 [<ffffffff80cc1c36>] inet_stream_connect+0x3e/0x68 [<ffffffff80b42b20>] __sys_connect_file+0x50/0x88 [<ffffffff80b42bee>] __sys_connect+0x96/0xc8 [<ffffffff80b42c40>] __riscv_sys_connect+0x20/0x30 [<ffffffff80e5bcae>] do_trap_ecall_u+0x256/0x378 [<ffffffff80e69af2>] handle_exception+0x14a/0x156 Code: 892a 0363 1205 489c 8bc1 c7e5 2d03 084a 2703 080a (2783) 0709 ---[ end trace 0000000000000000 ]--- The bpf_fifo_dequeue prog returns a skb which is a pointer. The pointer is treated as a 32bit value and sign extend to 64bit in epilogue. This behavior is right for most bpf prog types but wrong for struct ops which requires RISC-V ABI. So let's sign extend struct ops return values according to the function model and RISC-V ABI([0]). [0]: https://riscv.org/wp-content/uploads/2024/12/riscv-calling.pdf
medium
CVE-2025-40078In the Linux kernel, the following vulnerability has been resolved: bpf: Explicitly check accesses to bpf_sock_addr Syzkaller found a kernel warning on the following sock_addr program: 0: r0 = 0 1: r2 = *(u32 *)(r1 +60) 2: exit which triggers: verifier bug: error during ctx access conversion (0) This is happening because offset 60 in bpf_sock_addr corresponds to an implicit padding of 4 bytes, right after msg_src_ip4. Access to this padding isn't rejected in sock_addr_is_valid_access and it thus later fails to convert the access. This patch fixes it by explicitly checking the various fields of bpf_sock_addr in sock_addr_is_valid_access. I checked the other ctx structures and is_valid_access functions and didn't find any other similar cases. Other cases of (properly handled) padding are covered in new tests in a subsequent patch.
high
CVE-2025-40077In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid overflow while left shift operation Should cast type of folio->index from pgoff_t to loff_t to avoid overflow while left shift operation.
high
CVE-2025-40076In the Linux kernel, the following vulnerability has been resolved: PCI: rcar-host: Pass proper IRQ domain to generic_handle_domain_irq() Starting with commit dd26c1a23fd5 ("PCI: rcar-host: Switch to msi_create_parent_irq_domain()"), the MSI parent IRQ domain is NULL because the object of type struct irq_domain_info passed to: msi_create_parent_irq_domain() -> irq_domain_instantiate()() -> __irq_domain_instantiate() has no reference to the parent IRQ domain. Using msi->domain->parent as an argument for generic_handle_domain_irq() leads to below error: "Unable to handle kernel NULL pointer dereference at virtual address" This error was identified while switching the upcoming RZ/G3S PCIe host controller driver to msi_create_parent_irq_domain() (which was using a similar pattern to handle MSIs (see link section)), but it was not tested on hardware using the pcie-rcar-host controller driver due to lack of hardware. [mani: reworded subject and description]
medium
CVE-2025-40075In the Linux kernel, the following vulnerability has been resolved: tcp_metrics: use dst_dev_net_rcu() Replace three dst_dev() with a lockdep enabled helper.
high
CVE-2025-40074In the Linux kernel, the following vulnerability has been resolved: ipv4: start using dst_dev_rcu() Change icmpv4_xrlim_allow(), ip_defrag() to prevent possible UAF. Change ipmr_prepare_xmit(), ipmr_queue_fwd_xmit(), ip_mr_output(), ipv4_neigh_lookup() to use lockdep enabled dst_dev_rcu().
high
CVE-2025-40073In the Linux kernel, the following vulnerability has been resolved: drm/msm: Do not validate SSPP when it is not ready Current code will validate current plane and previous plane to confirm they can share a SSPP with multi-rect mode. The SSPP is already allocated for previous plane, while current plane is not associated with any SSPP yet. Null pointer is referenced when validating the SSPP of current plane. Skip SSPP validation for current plane. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000000888ac3000 [0000000000000020] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP Modules linked in: CPU: 4 UID: 0 PID: 1891 Comm: modetest Tainted: G S 6.15.0-rc2-g3ee3f6e1202e #335 PREEMPT Tainted: [S]=CPU_OUT_OF_SPEC Hardware name: SM8650 EV1 rev1 4slam 2et (DT) pstate: 63400009 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : dpu_plane_is_multirect_capable+0x68/0x90 lr : dpu_assign_plane_resources+0x288/0x410 sp : ffff800093dcb770 x29: ffff800093dcb770 x28: 0000000000002000 x27: ffff000817c6c000 x26: ffff000806b46368 x25: ffff0008013f6080 x24: ffff00080cbf4800 x23: ffff000810842680 x22: ffff0008013f1080 x21: ffff00080cc86080 x20: ffff000806b463b0 x19: ffff00080cbf5a00 x18: 00000000ffffffff x17: 707a5f657a696c61 x16: 0000000000000003 x15: 0000000000002200 x14: 00000000ffffffff x13: 00aaaaaa00aaaaaa x12: 0000000000000000 x11: ffff000817c6e2b8 x10: 0000000000000000 x9 : ffff80008106a950 x8 : ffff00080cbf48f4 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000438 x3 : 0000000000000438 x2 : ffff800082e245e0 x1 : 0000000000000008 x0 : 0000000000000000 Call trace: dpu_plane_is_multirect_capable+0x68/0x90 (P) dpu_crtc_atomic_check+0x5bc/0x650 drm_atomic_helper_check_planes+0x13c/0x220 drm_atomic_helper_check+0x58/0xb8 msm_atomic_check+0xd8/0xf0 drm_atomic_check_only+0x4a8/0x968 drm_atomic_commit+0x50/0xd8 drm_atomic_helper_update_plane+0x140/0x188 __setplane_atomic+0xfc/0x148 drm_mode_setplane+0x164/0x378 drm_ioctl_kernel+0xc0/0x140 drm_ioctl+0x20c/0x500 __arm64_sys_ioctl+0xbc/0xf8 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0x48/0xf8 do_el0_svc+0x28/0x40 el0_svc+0x30/0xd0 el0t_64_sync_handler+0x144/0x168 el0t_64_sync+0x198/0x1a0 Code: b9402021 370fffc1 f9401441 3707ff81 (f94010a1) ---[ end trace 0000000000000000 ]--- Patchwork: https://patchwork.freedesktop.org/patch/669224/
medium
CVE-2025-40072In the Linux kernel, the following vulnerability has been resolved: fanotify: Validate the return value of mnt_ns_from_dentry() before dereferencing The function do_fanotify_mark() does not validate if mnt_ns_from_dentry() returns NULL before dereferencing mntns->user_ns. This causes a NULL pointer dereference in do_fanotify_mark() if the path is not a mount namespace object. Fix this by checking mnt_ns_from_dentry()'s return value before dereferencing it. Before the patch $ gcc fanotify_nullptr.c -o fanotify_nullptr $ mkdir A $ ./fanotify_nullptr Fanotify fd: 3 fanotify_mark: Operation not permitted $ unshare -Urm Fanotify fd: 3 Killed int main(void){ int ffd; ffd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_MNT, 0); if(ffd < 0){ perror("fanotify_init"); exit(EXIT_FAILURE); } printf("Fanotify fd: %d\n",ffd); if(fanotify_mark(ffd, FAN_MARK_ADD | FAN_MARK_MNTNS, FAN_MNT_ATTACH, AT_FDCWD, "A") < 0){ perror("fanotify_mark"); exit(EXIT_FAILURE); } return 0; } After the patch $ gcc fanotify_nullptr.c -o fanotify_nullptr $ mkdir A $ ./fanotify_nullptr Fanotify fd: 3 fanotify_mark: Operation not permitted $ unshare -Urm Fanotify fd: 3 fanotify_mark: Invalid argument [ 25.694973] BUG: kernel NULL pointer dereference, address: 0000000000000038 [ 25.695006] #PF: supervisor read access in kernel mode [ 25.695012] #PF: error_code(0x0000) - not-present page [ 25.695017] PGD 109a30067 P4D 109a30067 PUD 142b46067 PMD 0 [ 25.695025] Oops: Oops: 0000 [#1] SMP NOPTI [ 25.695032] CPU: 4 UID: 1000 PID: 1478 Comm: fanotify_nullpt Not tainted 6.17.0-rc4 #1 PREEMPT(lazy) [ 25.695040] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 [ 25.695049] RIP: 0010:do_fanotify_mark+0x817/0x950 [ 25.695066] Code: 04 00 00 e9 45 fd ff ff 48 8b 7c 24 48 4c 89 54 24 18 4c 89 5c 24 10 4c 89 0c 24 e8 b3 11 fc ff 4c 8b 54 24 18 4c 8b 5c 24 10 <48> 8b 78 38 4c 8b 0c 24 49 89 c4 e9 13 fd ff ff 8b 4c 24 28 85 c9 [ 25.695081] RSP: 0018:ffffd31c469e3c08 EFLAGS: 00010203 [ 25.695104] RAX: 0000000000000000 RBX: 0000000001000000 RCX: ffff8eb48aebd220 [ 25.695110] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8eb4835e8180 [ 25.695115] RBP: 0000000000000111 R08: 0000000000000000 R09: 0000000000000000 [ 25.695142] R10: ffff8eb48a7d56c0 R11: ffff8eb482bede00 R12: 00000000004012a7 [ 25.695148] R13: 0000000000000110 R14: 0000000000000001 R15: ffff8eb48a7d56c0 [ 25.695154] FS: 00007f8733bda740(0000) GS:ffff8eb61ce5f000(0000) knlGS:0000000000000000 [ 25.695162] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 25.695170] CR2: 0000000000000038 CR3: 0000000136994006 CR4: 00000000003706f0 [ 25.695201] Call Trace: [ 25.695209] <TASK> [ 25.695215] __x64_sys_fanotify_mark+0x1f/0x30 [ 25.695222] do_syscall_64+0x82/0x2c0 ...
medium
CVE-2025-40071In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: Don't block input queue by waiting MSC Currently gsm_queue() processes incoming frames and when opening a DLC channel it calls gsm_dlci_open() which calls gsm_modem_update(). If basic mode is used it calls gsm_modem_upd_via_msc() and it cannot block the input queue by waiting the response to come into the same input queue. Instead allow sending Modem Status Command without waiting for remote end to respond. Define a new function gsm_modem_send_initial_msc() for this purpose. As MSC is only valid for basic encoding, it does not do anything for advanced or when convergence layer type 2 is used.
medium
CVE-2025-40070In the Linux kernel, the following vulnerability has been resolved: pps: fix warning in pps_register_cdev when register device fail Similar to previous commit 2a934fdb01db ("media: v4l2-dev: fix error handling in __video_register_device()"), the release hook should be set before device_register(). Otherwise, when device_register() return error and put_device() try to callback the release function, the below warning may happen. ------------[ cut here ]------------ WARNING: CPU: 1 PID: 4760 at drivers/base/core.c:2567 device_release+0x1bd/0x240 drivers/base/core.c:2567 Modules linked in: CPU: 1 UID: 0 PID: 4760 Comm: syz.4.914 Not tainted 6.17.0-rc3+ #1 NONE RIP: 0010:device_release+0x1bd/0x240 drivers/base/core.c:2567 Call Trace: <TASK> kobject_cleanup+0x136/0x410 lib/kobject.c:689 kobject_release lib/kobject.c:720 [inline] kref_put include/linux/kref.h:65 [inline] kobject_put+0xe9/0x130 lib/kobject.c:737 put_device+0x24/0x30 drivers/base/core.c:3797 pps_register_cdev+0x2da/0x370 drivers/pps/pps.c:402 pps_register_source+0x2f6/0x480 drivers/pps/kapi.c:108 pps_tty_open+0x190/0x310 drivers/pps/clients/pps-ldisc.c:57 tty_ldisc_open+0xa7/0x120 drivers/tty/tty_ldisc.c:432 tty_set_ldisc+0x333/0x780 drivers/tty/tty_ldisc.c:563 tiocsetd drivers/tty/tty_io.c:2429 [inline] tty_ioctl+0x5d1/0x1700 drivers/tty/tty_io.c:2728 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:598 [inline] __se_sys_ioctl fs/ioctl.c:584 [inline] __x64_sys_ioctl+0x194/0x210 fs/ioctl.c:584 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0x5f/0x2a0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Before commit c79a39dc8d06 ("pps: Fix a use-after-free"), pps_register_cdev() call device_create() to create pps->dev, which will init dev->release to device_create_release(). Now the comment is outdated, just remove it. Thanks for the reminder from Calvin Owens, 'kfree_pps' should be removed in pps_register_source() to avoid a double free in the failure case.
medium
CVE-2025-40069In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix obj leak in VM_BIND error path If we fail a handle-lookup part way thru, we need to drop the already obtained obj references. Patchwork: https://patchwork.freedesktop.org/patch/669784/
high
CVE-2025-40068In the Linux kernel, the following vulnerability has been resolved: fs: ntfs3: Fix integer overflow in run_unpack() The MFT record relative to the file being opened contains its runlist, an array containing information about the file's location on the physical disk. Analysis of all Call Stack paths showed that the values of the runlist array, from which LCNs are calculated, are not validated before run_unpack function. The run_unpack function decodes the compressed runlist data format from MFT attributes (for example, $DATA), converting them into a runs_tree structure, which describes the mapping of virtual clusters (VCN) to logical clusters (LCN). The NTFS3 subsystem also has a shortcut for deleting files from MFT records - in this case, the RUN_DEALLOCATE command is sent to the run_unpack input, and the function logic provides that all data transferred to the runlist about file or directory is deleted without creating a runs_tree structure. Substituting the runlist in the $DATA attribute of the MFT record for an arbitrary file can lead either to access to arbitrary data on the disk bypassing access checks to them (since the inode access check occurs above) or to destruction of arbitrary data on the disk. Add overflow check for addition operation. Found by Linux Verification Center (linuxtesting.org) with SVACE.
high
CVE-2025-40067In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: reject index allocation if $BITMAP is empty but blocks exist Index allocation requires at least one bit in the $BITMAP attribute to track usage of index entries. If the bitmap is empty while index blocks are already present, this reflects on-disk corruption. syzbot triggered this condition using a malformed NTFS image. During a rename() operation involving a long filename (which spans multiple index entries), the empty bitmap allowed the name to be added without valid tracking. Subsequent deletion of the original entry failed with -ENOENT, due to unexpected index state. Reject such cases by verifying that the bitmap is not empty when index blocks exist.
high
CVE-2025-40066In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: Check phy before init msta_link in mt7996_mac_sta_add_links() In order to avoid a possible NULL pointer dereference in mt7996_mac_sta_init_link routine, move the phy pointer check before running mt7996_mac_sta_init_link() in mt7996_mac_sta_add_links routine.
medium
CVE-2025-40065In the Linux kernel, the following vulnerability has been resolved: RISC-V: KVM: Write hgatp register with valid mode bits According to the RISC-V Privileged Architecture Spec, when MODE=Bare is selected,software must write zero to the remaining fields of hgatp. We have detected the valid mode supported by the HW before, So using a valid mode to detect how many vmid bits are supported.
high