CVE-2025-38153 | In the Linux kernel, the following vulnerability has been resolved: net: usb: aqc111: fix error handling of usbnet read calls Syzkaller, courtesy of syzbot, identified an error (see report [1]) in aqc111 driver, caused by incomplete sanitation of usb read calls' results. This problem is quite similar to the one fixed in commit 920a9fa27e78 ("net: asix: add proper error handling of usb read errors"). For instance, usbnet_read_cmd() may read fewer than 'size' bytes, even if the caller expected the full amount, and aqc111_read_cmd() will not check its result properly. As [1] shows, this may lead to MAC address in aqc111_bind() being only partly initialized, triggering KMSAN warnings. Fix the issue by verifying that the number of bytes read is as expected and not less. [1] Partial syzbot report: BUG: KMSAN: uninit-value in is_valid_ether_addr include/linux/etherdevice.h:208 [inline] BUG: KMSAN: uninit-value in usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 is_valid_ether_addr include/linux/etherdevice.h:208 [inline] usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] really_probe+0x4d1/0xd90 drivers/base/dd.c:658 __driver_probe_device+0x268/0x380 drivers/base/dd.c:800 ... Uninit was stored to memory at: dev_addr_mod+0xb0/0x550 net/core/dev_addr_lists.c:582 __dev_addr_set include/linux/netdevice.h:4874 [inline] eth_hw_addr_set include/linux/etherdevice.h:325 [inline] aqc111_bind+0x35f/0x1150 drivers/net/usb/aqc111.c:717 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 ... Uninit was stored to memory at: ether_addr_copy include/linux/etherdevice.h:305 [inline] aqc111_read_perm_mac drivers/net/usb/aqc111.c:663 [inline] aqc111_bind+0x794/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] ... Local variable buf.i created at: aqc111_read_perm_mac drivers/net/usb/aqc111.c:656 [inline] aqc111_bind+0x221/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 | medium |
CVE-2025-38151 | In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Fix hang when cma_netevent_callback fails to queue_work The cited commit fixed a crash when cma_netevent_callback was called for a cma_id while work on that id from a previous call had not yet started. The work item was re-initialized in the second call, which corrupted the work item currently in the work queue. However, it left a problem when queue_work fails (because the item is still pending in the work queue from a previous call). In this case, cma_id_put (which is called in the work handler) is therefore not called. This results in a userspace process hang (zombie process). Fix this by calling cma_id_put() if queue_work fails. | medium |
CVE-2025-38150 | In the Linux kernel, the following vulnerability has been resolved: af_packet: move notifier's packet_dev_mc out of rcu critical section Syzkaller reports the following issue: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:578 __mutex_lock+0x106/0xe80 kernel/locking/mutex.c:746 team_change_rx_flags+0x38/0x220 drivers/net/team/team_core.c:1781 dev_change_rx_flags net/core/dev.c:9145 [inline] __dev_set_promiscuity+0x3f8/0x590 net/core/dev.c:9189 netif_set_promiscuity+0x50/0xe0 net/core/dev.c:9201 dev_set_promiscuity+0x126/0x260 net/core/dev_api.c:286 packet_dev_mc net/packet/af_packet.c:3698 [inline] packet_dev_mclist_delete net/packet/af_packet.c:3722 [inline] packet_notifier+0x292/0xa60 net/packet/af_packet.c:4247 notifier_call_chain+0x1b3/0x3e0 kernel/notifier.c:85 call_netdevice_notifiers_extack net/core/dev.c:2214 [inline] call_netdevice_notifiers net/core/dev.c:2228 [inline] unregister_netdevice_many_notify+0x15d8/0x2330 net/core/dev.c:11972 rtnl_delete_link net/core/rtnetlink.c:3522 [inline] rtnl_dellink+0x488/0x710 net/core/rtnetlink.c:3564 rtnetlink_rcv_msg+0x7cf/0xb70 net/core/rtnetlink.c:6955 netlink_rcv_skb+0x219/0x490 net/netlink/af_netlink.c:2534 Calling `PACKET_ADD_MEMBERSHIP` on an ops-locked device can trigger the `NETDEV_UNREGISTER` notifier, which may require disabling promiscuous and/or allmulti mode. Both of these operations require acquiring the netdev instance lock. Move the call to `packet_dev_mc` outside of the RCU critical section. The `mclist` modifications (add, del, flush, unregister) are protected by the RTNL, not the RCU. The RCU only protects the `sklist` and its associated `sks`. The delayed operation on the `mclist` entry remains within the RTNL. | medium |
CVE-2025-38149 | In the Linux kernel, the following vulnerability has been resolved: net: phy: clear phydev->devlink when the link is deleted There is a potential crash issue when disabling and re-enabling the network port. When disabling the network port, phy_detach() calls device_link_del() to remove the device link, but it does not clear phydev->devlink, so phydev->devlink is not a NULL pointer. Then the network port is re-enabled, but if phy_attach_direct() fails before calling device_link_add(), the code jumps to the "error" label and calls phy_detach(). Since phydev->devlink retains the old value from the previous attach/detach cycle, device_link_del() uses the old value, which accesses a NULL pointer and causes a crash. The simplified crash log is as follows. [ 24.702421] Call trace: [ 24.704856] device_link_put_kref+0x20/0x120 [ 24.709124] device_link_del+0x30/0x48 [ 24.712864] phy_detach+0x24/0x168 [ 24.716261] phy_attach_direct+0x168/0x3a4 [ 24.720352] phylink_fwnode_phy_connect+0xc8/0x14c [ 24.725140] phylink_of_phy_connect+0x1c/0x34 Therefore, phydev->devlink needs to be cleared when the device link is deleted. | medium |
CVE-2025-38148 | In the Linux kernel, the following vulnerability has been resolved: net: phy: mscc: Fix memory leak when using one step timestamping Fix memory leak when running one-step timestamping. When running one-step sync timestamping, the HW is configured to insert the TX time into the frame, so there is no reason to keep the skb anymore. As in this case the HW will never generate an interrupt to say that the frame was timestamped, then the frame will never released. Fix this by freeing the frame in case of one-step timestamping. | medium |
CVE-2025-38147 | In the Linux kernel, the following vulnerability has been resolved: calipso: Don't call calipso functions for AF_INET sk. syzkaller reported a null-ptr-deref in txopt_get(). [0] The offset 0x70 was of struct ipv6_txoptions in struct ipv6_pinfo, so struct ipv6_pinfo was NULL there. However, this never happens for IPv6 sockets as inet_sk(sk)->pinet6 is always set in inet6_create(), meaning the socket was not IPv6 one. The root cause is missing validation in netlbl_conn_setattr(). netlbl_conn_setattr() switches branches based on struct sockaddr.sa_family, which is passed from userspace. However, netlbl_conn_setattr() does not check if the address family matches the socket. The syzkaller must have called connect() for an IPv6 address on an IPv4 socket. We have a proper validation in tcp_v[46]_connect(), but security_socket_connect() is called in the earlier stage. Let's copy the validation to netlbl_conn_setattr(). [0]: Oops: general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077] CPU: 2 UID: 0 PID: 12928 Comm: syz.9.1677 Not tainted 6.12.0 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:txopt_get include/net/ipv6.h:390 [inline] RIP: 0010: Code: 02 00 00 49 8b ac 24 f8 02 00 00 e8 84 69 2a fd e8 ff 00 16 fd 48 8d 7d 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 53 02 00 00 48 8b 6d 70 48 85 ed 0f 84 ab 01 00 RSP: 0018:ffff88811b8afc48 EFLAGS: 00010212 RAX: dffffc0000000000 RBX: 1ffff11023715f8a RCX: ffffffff841ab00c RDX: 000000000000000e RSI: ffffc90007d9e000 RDI: 0000000000000070 RBP: 0000000000000000 R08: ffffed1023715f9d R09: ffffed1023715f9e R10: ffffed1023715f9d R11: 0000000000000003 R12: ffff888123075f00 R13: ffff88810245bd80 R14: ffff888113646780 R15: ffff888100578a80 FS: 00007f9019bd7640(0000) GS:ffff8882d2d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f901b927bac CR3: 0000000104788003 CR4: 0000000000770ef0 PKRU: 80000000 Call Trace: <TASK> calipso_sock_setattr+0x56/0x80 net/netlabel/netlabel_calipso.c:557 netlbl_conn_setattr+0x10c/0x280 net/netlabel/netlabel_kapi.c:1177 selinux_netlbl_socket_connect_helper+0xd3/0x1b0 security/selinux/netlabel.c:569 selinux_netlbl_socket_connect_locked security/selinux/netlabel.c:597 [inline] selinux_netlbl_socket_connect+0xb6/0x100 security/selinux/netlabel.c:615 selinux_socket_connect+0x5f/0x80 security/selinux/hooks.c:4931 security_socket_connect+0x50/0xa0 security/security.c:4598 __sys_connect_file+0xa4/0x190 net/socket.c:2067 __sys_connect+0x12c/0x170 net/socket.c:2088 __do_sys_connect net/socket.c:2098 [inline] __se_sys_connect net/socket.c:2095 [inline] __x64_sys_connect+0x73/0xb0 net/socket.c:2095 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xaa/0x1b0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f901b61a12d Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f9019bd6fa8 EFLAGS: 00000246 ORIG_RAX: 000000000000002a RAX: ffffffffffffffda RBX: 00007f901b925fa0 RCX: 00007f901b61a12d RDX: 000000000000001c RSI: 0000200000000140 RDI: 0000000000000003 RBP: 00007f901b701505 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f901b5b62a0 R15: 00007f9019bb7000 </TASK> Modules linked in: | medium |
CVE-2025-38146 | In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: Fix the dead loop of MPLS parse The unexpected MPLS packet may not end with the bottom label stack. When there are many stacks, The label count value has wrapped around. A dead loop occurs, soft lockup/CPU stuck finally. stack backtrace: UBSAN: array-index-out-of-bounds in /build/linux-0Pa0xK/linux-5.15.0/net/openvswitch/flow.c:662:26 index -1 is out of range for type '__be32 [3]' CPU: 34 PID: 0 Comm: swapper/34 Kdump: loaded Tainted: G OE 5.15.0-121-generic #131-Ubuntu Hardware name: Dell Inc. PowerEdge C6420/0JP9TF, BIOS 2.12.2 07/14/2021 Call Trace: <IRQ> show_stack+0x52/0x5c dump_stack_lvl+0x4a/0x63 dump_stack+0x10/0x16 ubsan_epilogue+0x9/0x36 __ubsan_handle_out_of_bounds.cold+0x44/0x49 key_extract_l3l4+0x82a/0x840 [openvswitch] ? kfree_skbmem+0x52/0xa0 key_extract+0x9c/0x2b0 [openvswitch] ovs_flow_key_extract+0x124/0x350 [openvswitch] ovs_vport_receive+0x61/0xd0 [openvswitch] ? kernel_init_free_pages.part.0+0x4a/0x70 ? get_page_from_freelist+0x353/0x540 netdev_port_receive+0xc4/0x180 [openvswitch] ? netdev_port_receive+0x180/0x180 [openvswitch] netdev_frame_hook+0x1f/0x40 [openvswitch] __netif_receive_skb_core.constprop.0+0x23a/0xf00 __netif_receive_skb_list_core+0xfa/0x240 netif_receive_skb_list_internal+0x18e/0x2a0 napi_complete_done+0x7a/0x1c0 bnxt_poll+0x155/0x1c0 [bnxt_en] __napi_poll+0x30/0x180 net_rx_action+0x126/0x280 ? bnxt_msix+0x67/0x80 [bnxt_en] handle_softirqs+0xda/0x2d0 irq_exit_rcu+0x96/0xc0 common_interrupt+0x8e/0xa0 </IRQ> | medium |
CVE-2025-38145 | In the Linux kernel, the following vulnerability has been resolved: soc: aspeed: Add NULL check in aspeed_lpc_enable_snoop() devm_kasprintf() returns NULL when memory allocation fails. Currently, aspeed_lpc_enable_snoop() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue. [arj: Fix Fixes: tag to use subject from 3772e5da4454] | medium |
CVE-2025-38144 | In the Linux kernel, the following vulnerability has been resolved: watchdog: lenovo_se30_wdt: Fix possible devm_ioremap() NULL pointer dereference in lenovo_se30_wdt_probe() devm_ioremap() returns NULL on error. Currently, lenovo_se30_wdt_probe() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_ioremap() to prevent this issue. | medium |
CVE-2025-38143 | In the Linux kernel, the following vulnerability has been resolved: backlight: pm8941: Add NULL check in wled_configure() devm_kasprintf() returns NULL when memory allocation fails. Currently, wled_configure() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue. | medium |
CVE-2025-38142 | In the Linux kernel, the following vulnerability has been resolved: hwmon: (asus-ec-sensors) check sensor index in read_string() Prevent a potential invalid memory access when the requested sensor is not found. find_ec_sensor_index() may return a negative value (e.g. -ENOENT), but its result was used without checking, which could lead to undefined behavior when passed to get_sensor_info(). Add a proper check to return -EINVAL if sensor_index is negative. Found by Linux Verification Center (linuxtesting.org) with SVACE. [groeck: Return error code returned from find_ec_sensor_index] | medium |
CVE-2025-38141 | In the Linux kernel, the following vulnerability has been resolved: dm: fix dm_blk_report_zones If dm_get_live_table() returned NULL, dm_put_live_table() was never called. Also, it is possible that md->zone_revalidate_map will change while calling this function. Only read it once, so that we are always using the same value. Otherwise we might miss a call to dm_put_live_table(). Finally, while md->zone_revalidate_map is set and a process is calling blk_revalidate_disk_zones() to set up the zone append emulation resources, it is possible that another process, perhaps triggered by blkdev_report_zones_ioctl(), will call dm_blk_report_zones(). If blk_revalidate_disk_zones() fails, these resources can be freed while the other process is still using them, causing a use-after-free error. blk_revalidate_disk_zones() will only ever be called when initially setting up the zone append emulation resources, such as when setting up a zoned dm-crypt table for the first time. Further table swaps will not set md->zone_revalidate_map or call blk_revalidate_disk_zones(). However it must be called using the new table (referenced by md->zone_revalidate_map) and the new queue limits while the DM device is suspended. dm_blk_report_zones() needs some way to distinguish between a call from blk_revalidate_disk_zones(), which must be allowed to use md->zone_revalidate_map to access this not yet activated table, and all other calls to dm_blk_report_zones(), which should not be allowed while the device is suspended and cannot use md->zone_revalidate_map, since the zone resources might be freed by the process currently calling blk_revalidate_disk_zones(). Solve this by tracking the process that sets md->zone_revalidate_map in dm_revalidate_zones() and only allowing that process to make use of it in dm_blk_report_zones(). | medium |
CVE-2025-38140 | In the Linux kernel, the following vulnerability has been resolved: dm: limit swapping tables for devices with zone write plugs dm_revalidate_zones() only allowed new or previously unzoned devices to call blk_revalidate_disk_zones(). If the device was already zoned, disk->nr_zones would always equal md->nr_zones, so dm_revalidate_zones() returned without doing any work. This would make the zoned settings for the device not match the new table. If the device had zone write plug resources, it could run into errors like bdev_zone_is_seq() reading invalid memory because disk->conv_zones_bitmap was the wrong size. If the device doesn't have any zone write plug resources, calling blk_revalidate_disk_zones() will always correctly update device. If blk_revalidate_disk_zones() fails, it can still overwrite or clear the current disk->nr_zones value. In this case, DM must restore the previous value of disk->nr_zones, so that the zoned settings will continue to match the previous value that it fell back to. If the device already has zone write plug resources, blk_revalidate_disk_zones() will not correctly update them, if it is called for arbitrary zoned device changes. Since there is not much need for this ability, the easiest solution is to disallow any table reloads that change the zoned settings, for devices that already have zone plug resources. Specifically, if a device already has zone plug resources allocated, it can only switch to another zoned table that also emulates zone append. Also, it cannot change the device size or the zone size. A device can switch to an error target. | high |
CVE-2025-38139 | In the Linux kernel, the following vulnerability has been resolved: netfs: Fix oops in write-retry from mis-resetting the subreq iterator Fix the resetting of the subrequest iterator in netfs_retry_write_stream() to use the iterator-reset function as the iterator may have been shortened by a previous retry. In such a case, the amount of data to be written by the subrequest is not "subreq->len" but "subreq->len - subreq->transferred". Without this, KASAN may see an error in iov_iter_revert(): BUG: KASAN: slab-out-of-bounds in iov_iter_revert lib/iov_iter.c:633 [inline] BUG: KASAN: slab-out-of-bounds in iov_iter_revert+0x443/0x5a0 lib/iov_iter.c:611 Read of size 4 at addr ffff88802912a0b8 by task kworker/u32:7/1147 CPU: 1 UID: 0 PID: 1147 Comm: kworker/u32:7 Not tainted 6.15.0-rc6-syzkaller-00052-g9f35e33144ae #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Workqueue: events_unbound netfs_write_collection_worker Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xc3/0x670 mm/kasan/report.c:521 kasan_report+0xe0/0x110 mm/kasan/report.c:634 iov_iter_revert lib/iov_iter.c:633 [inline] iov_iter_revert+0x443/0x5a0 lib/iov_iter.c:611 netfs_retry_write_stream fs/netfs/write_retry.c:44 [inline] netfs_retry_writes+0x166d/0x1a50 fs/netfs/write_retry.c:231 netfs_collect_write_results fs/netfs/write_collect.c:352 [inline] netfs_write_collection_worker+0x23fd/0x3830 fs/netfs/write_collect.c:374 process_one_work+0x9cf/0x1b70 kernel/workqueue.c:3238 process_scheduled_works kernel/workqueue.c:3319 [inline] worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400 kthread+0x3c2/0x780 kernel/kthread.c:464 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> | high |
CVE-2025-38138 | In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: Add NULL check in udma_probe() devm_kasprintf() returns NULL when memory allocation fails. Currently, udma_probe() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue. | medium |
CVE-2025-38137 | In the Linux kernel, the following vulnerability has been resolved: PCI/pwrctrl: Cancel outstanding rescan work when unregistering It's possible to trigger use-after-free here by: (a) forcing rescan_work_func() to take a long time and (b) utilizing a pwrctrl driver that may be unloaded for some reason Cancel outstanding work to ensure it is finished before we allow our data structures to be cleaned up. [bhelgaas: tidy commit log] | medium |
CVE-2025-38136 | In the Linux kernel, the following vulnerability has been resolved: usb: renesas_usbhs: Reorder clock handling and power management in probe Reorder the initialization sequence in `usbhs_probe()` to enable runtime PM before accessing registers, preventing potential crashes due to uninitialized clocks. Currently, in the probe path, registers are accessed before enabling the clocks, leading to a synchronous external abort on the RZ/V2H SoC. The problematic call flow is as follows: usbhs_probe() usbhs_sys_clock_ctrl() usbhs_bset() usbhs_write() iowrite16() <-- Register access before enabling clocks Since `iowrite16()` is performed without ensuring the required clocks are enabled, this can lead to access errors. To fix this, enable PM runtime early in the probe function and ensure clocks are acquired before register access, preventing crashes like the following on RZ/V2H: [13.272640] Internal error: synchronous external abort: 0000000096000010 [#1] PREEMPT SMP [13.280814] Modules linked in: cec renesas_usbhs(+) drm_kms_helper fuse drm backlight ipv6 [13.289088] CPU: 1 UID: 0 PID: 195 Comm: (udev-worker) Not tainted 6.14.0-rc7+ #98 [13.296640] Hardware name: Renesas RZ/V2H EVK Board based on r9a09g057h44 (DT) [13.303834] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [13.310770] pc : usbhs_bset+0x14/0x4c [renesas_usbhs] [13.315831] lr : usbhs_probe+0x2e4/0x5ac [renesas_usbhs] [13.321138] sp : ffff8000827e3850 [13.324438] x29: ffff8000827e3860 x28: 0000000000000000 x27: ffff8000827e3ca0 [13.331554] x26: ffff8000827e3ba0 x25: ffff800081729668 x24: 0000000000000025 [13.338670] x23: ffff0000c0f08000 x22: 0000000000000000 x21: ffff0000c0f08010 [13.345783] x20: 0000000000000000 x19: ffff0000c3b52080 x18: 00000000ffffffff [13.352895] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000827e36ce [13.360009] x14: 00000000000003d7 x13: 00000000000003d7 x12: 0000000000000000 [13.367122] x11: 0000000000000000 x10: 0000000000000aa0 x9 : ffff8000827e3750 [13.374235] x8 : ffff0000c1850b00 x7 : 0000000003826060 x6 : 000000000000001c [13.381347] x5 : 000000030d5fcc00 x4 : ffff8000825c0000 x3 : 0000000000000000 [13.388459] x2 : 0000000000000400 x1 : 0000000000000000 x0 : ffff0000c3b52080 [13.395574] Call trace: [13.398013] usbhs_bset+0x14/0x4c [renesas_usbhs] (P) [13.403076] platform_probe+0x68/0xdc [13.406738] really_probe+0xbc/0x2c0 [13.410306] __driver_probe_device+0x78/0x120 [13.414653] driver_probe_device+0x3c/0x154 [13.418825] __driver_attach+0x90/0x1a0 [13.422647] bus_for_each_dev+0x7c/0xe0 [13.426470] driver_attach+0x24/0x30 [13.430032] bus_add_driver+0xe4/0x208 [13.433766] driver_register+0x68/0x130 [13.437587] __platform_driver_register+0x24/0x30 [13.442273] renesas_usbhs_driver_init+0x20/0x1000 [renesas_usbhs] [13.448450] do_one_initcall+0x60/0x1d4 [13.452276] do_init_module+0x54/0x1f8 [13.456014] load_module+0x1754/0x1c98 [13.459750] init_module_from_file+0x88/0xcc [13.464004] __arm64_sys_finit_module+0x1c4/0x328 [13.468689] invoke_syscall+0x48/0x104 [13.472426] el0_svc_common.constprop.0+0xc0/0xe0 [13.477113] do_el0_svc+0x1c/0x28 [13.480415] el0_svc+0x30/0xcc [13.483460] el0t_64_sync_handler+0x10c/0x138 [13.487800] el0t_64_sync+0x198/0x19c [13.491453] Code: 2a0103e1 12003c42 12003c63 8b010084 (79400084) [13.497522] ---[ end trace 0000000000000000 ]--- | medium |
CVE-2025-38135 | In the Linux kernel, the following vulnerability has been resolved: serial: Fix potential null-ptr-deref in mlb_usio_probe() devm_ioremap() can return NULL on error. Currently, mlb_usio_probe() does not check for this case, which could result in a NULL pointer dereference. Add NULL check after devm_ioremap() to prevent this issue. | medium |
CVE-2025-38134 | In the Linux kernel, the following vulnerability has been resolved: usb: acpi: Prevent null pointer dereference in usb_acpi_add_usb4_devlink() As demonstrated by the fix for update_port_device_state, commit 12783c0b9e2c ("usb: core: Prevent null pointer dereference in update_port_device_state"), usb_hub_to_struct_hub() can return NULL in certain scenarios, such as during hub driver unbind or teardown race conditions, even if the underlying usb_device structure exists. Plus, all other places that call usb_hub_to_struct_hub() in the same file do check for NULL return values. If usb_hub_to_struct_hub() returns NULL, the subsequent access to hub->ports[udev->portnum - 1] will cause a null pointer dereference. | medium |
CVE-2025-38133 | In the Linux kernel, the following vulnerability has been resolved: iio: adc: ad4851: fix ad4858 chan pointer handling The pointer returned from ad4851_parse_channels_common() is incremented internally as each channel is populated. In ad4858_parse_channels(), the same pointer was further incremented while setting ext_scan_type fields for each channel. This resulted in indio_dev->channels being set to a pointer past the end of the allocated array, potentially causing memory corruption or undefined behavior. Fix this by iterating over the channels using an explicit index instead of incrementing the pointer. This preserves the original base pointer and ensures all channel metadata is set correctly. | high |
CVE-2025-38132 | In the Linux kernel, the following vulnerability has been resolved: coresight: holding cscfg_csdev_lock while removing cscfg from csdev There'll be possible race scenario for coresight config: CPU0 CPU1 (perf enable) load module cscfg_load_config_sets() activate config. // sysfs (sys_active_cnt == 1) ... cscfg_csdev_enable_active_config() lock(csdev->cscfg_csdev_lock) deactivate config // sysfs (sys_activec_cnt == 0) cscfg_unload_config_sets() <iterating config_csdev_list> cscfg_remove_owned_csdev_configs() // here load config activate by CPU1 unlock(csdev->cscfg_csdev_lock) iterating config_csdev_list could be raced with config_csdev_list's entry delete. To resolve this race , hold csdev->cscfg_csdev_lock() while cscfg_remove_owned_csdev_configs() | medium |
CVE-2025-38131 | In the Linux kernel, the following vulnerability has been resolved: coresight: prevent deactivate active config while enabling the config While enable active config via cscfg_csdev_enable_active_config(), active config could be deactivated via configfs' sysfs interface. This could make UAF issue in below scenario: CPU0 CPU1 (sysfs enable) load module cscfg_load_config_sets() activate config. // sysfs (sys_active_cnt == 1) ... cscfg_csdev_enable_active_config() lock(csdev->cscfg_csdev_lock) // here load config activate by CPU1 unlock(csdev->cscfg_csdev_lock) deactivate config // sysfs (sys_activec_cnt == 0) cscfg_unload_config_sets() unload module // access to config_desc which freed // while unloading module. cscfg_csdev_enable_config To address this, use cscfg_config_desc's active_cnt as a reference count which will be holded when - activate the config. - enable the activated config. and put the module reference when config_active_cnt == 0. | high |
CVE-2025-38130 | In the Linux kernel, the following vulnerability has been resolved: drm/connector: only call HDMI audio helper plugged cb if non-null On driver remove, sound/soc/codecs/hdmi-codec.c calls the plugged_cb with NULL as the callback function and codec_dev, as seen in its hdmi_remove function. The HDMI audio helper then happily tries calling said null function pointer, and produces an Oops as a result. Fix this by only executing the callback if fn is non-null. This means the .plugged_cb and .plugged_cb_dev members still get appropriately cleared. | medium |
CVE-2025-38129 | In the Linux kernel, the following vulnerability has been resolved: page_pool: Fix use-after-free in page_pool_recycle_in_ring syzbot reported a uaf in page_pool_recycle_in_ring: BUG: KASAN: slab-use-after-free in lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862 Read of size 8 at addr ffff8880286045a0 by task syz.0.284/6943 CPU: 0 UID: 0 PID: 6943 Comm: syz.0.284 Not tainted 6.13.0-rc3-syzkaller-gdfa94ce54f41 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862 __raw_spin_unlock_bh include/linux/spinlock_api_smp.h:165 [inline] _raw_spin_unlock_bh+0x1b/0x40 kernel/locking/spinlock.c:210 spin_unlock_bh include/linux/spinlock.h:396 [inline] ptr_ring_produce_bh include/linux/ptr_ring.h:164 [inline] page_pool_recycle_in_ring net/core/page_pool.c:707 [inline] page_pool_put_unrefed_netmem+0x748/0xb00 net/core/page_pool.c:826 page_pool_put_netmem include/net/page_pool/helpers.h:323 [inline] page_pool_put_full_netmem include/net/page_pool/helpers.h:353 [inline] napi_pp_put_page+0x149/0x2b0 net/core/skbuff.c:1036 skb_pp_recycle net/core/skbuff.c:1047 [inline] skb_free_head net/core/skbuff.c:1094 [inline] skb_release_data+0x6c4/0x8a0 net/core/skbuff.c:1125 skb_release_all net/core/skbuff.c:1190 [inline] __kfree_skb net/core/skbuff.c:1204 [inline] sk_skb_reason_drop+0x1c9/0x380 net/core/skbuff.c:1242 kfree_skb_reason include/linux/skbuff.h:1263 [inline] __skb_queue_purge_reason include/linux/skbuff.h:3343 [inline] root cause is: page_pool_recycle_in_ring ptr_ring_produce spin_lock(&r->producer_lock); WRITE_ONCE(r->queue[r->producer++], ptr) //recycle last page to pool page_pool_release page_pool_scrub page_pool_empty_ring ptr_ring_consume page_pool_return_page //release all page __page_pool_destroy free_percpu(pool->recycle_stats); free(pool) //free spin_unlock(&r->producer_lock); //pool->ring uaf read recycle_stat_inc(pool, ring); page_pool can be free while page pool recycle the last page in ring. Add producer-lock barrier to page_pool_release to prevent the page pool from being free before all pages have been recycled. recycle_stat_inc() is empty when CONFIG_PAGE_POOL_STATS is not enabled, which will trigger Wempty-body build warning. Add definition for pool stat macro to fix warning. | high |
CVE-2025-38128 | In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: reject malformed HCI_CMD_SYNC commands In 'mgmt_hci_cmd_sync()', check whether the size of parameters passed in 'struct mgmt_cp_hci_cmd_sync' matches the total size of the data (i.e. 'sizeof(struct mgmt_cp_hci_cmd_sync)' plus trailing bytes). Otherwise, large invalid 'params_len' will cause 'hci_cmd_sync_alloc()' to do 'skb_put_data()' from an area beyond the one actually passed to 'mgmt_hci_cmd_sync()'. | medium |
CVE-2025-38127 | In the Linux kernel, the following vulnerability has been resolved: ice: fix Tx scheduler error handling in XDP callback When the XDP program is loaded, the XDP callback adds new Tx queues. This means that the callback must update the Tx scheduler with the new queue number. In the event of a Tx scheduler failure, the XDP callback should also fail and roll back any changes previously made for XDP preparation. The previous implementation had a bug that not all changes made by the XDP callback were rolled back. This caused the crash with the following call trace: [ +9.549584] ice 0000:ca:00.0: Failed VSI LAN queue config for XDP, error: -5 [ +0.382335] Oops: general protection fault, probably for non-canonical address 0x50a2250a90495525: 0000 [#1] SMP NOPTI [ +0.010710] CPU: 103 UID: 0 PID: 0 Comm: swapper/103 Not tainted 6.14.0-net-next-mar-31+ #14 PREEMPT(voluntary) [ +0.010175] Hardware name: Intel Corporation M50CYP2SBSTD/M50CYP2SBSTD, BIOS SE5C620.86B.01.01.0005.2202160810 02/16/2022 [ +0.010946] RIP: 0010:__ice_update_sample+0x39/0xe0 [ice] [...] [ +0.002715] Call Trace: [ +0.002452] <IRQ> [ +0.002021] ? __die_body.cold+0x19/0x29 [ +0.003922] ? die_addr+0x3c/0x60 [ +0.003319] ? exc_general_protection+0x17c/0x400 [ +0.004707] ? asm_exc_general_protection+0x26/0x30 [ +0.004879] ? __ice_update_sample+0x39/0xe0 [ice] [ +0.004835] ice_napi_poll+0x665/0x680 [ice] [ +0.004320] __napi_poll+0x28/0x190 [ +0.003500] net_rx_action+0x198/0x360 [ +0.003752] ? update_rq_clock+0x39/0x220 [ +0.004013] handle_softirqs+0xf1/0x340 [ +0.003840] ? sched_clock_cpu+0xf/0x1f0 [ +0.003925] __irq_exit_rcu+0xc2/0xe0 [ +0.003665] common_interrupt+0x85/0xa0 [ +0.003839] </IRQ> [ +0.002098] <TASK> [ +0.002106] asm_common_interrupt+0x26/0x40 [ +0.004184] RIP: 0010:cpuidle_enter_state+0xd3/0x690 Fix this by performing the missing unmapping of XDP queues from q_vectors and setting the XDP rings pointer back to NULL after all those queues are released. Also, add an immediate exit from the XDP callback in case of ring preparation failure. | medium |
CVE-2025-38126 | In the Linux kernel, the following vulnerability has been resolved: net: stmmac: make sure that ptp_rate is not 0 before configuring timestamping The stmmac platform drivers that do not open-code the clk_ptp_rate value after having retrieved the default one from the device-tree can end up with 0 in clk_ptp_rate (as clk_get_rate can return 0). It will eventually propagate up to PTP initialization when bringing up the interface, leading to a divide by 0: Division by zero in kernel. CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.30-00001-g48313bd5768a #22 Hardware name: STM32 (Device Tree Support) Call trace: unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x6c/0x8c dump_stack_lvl from Ldiv0_64+0x8/0x18 Ldiv0_64 from stmmac_init_tstamp_counter+0x190/0x1a4 stmmac_init_tstamp_counter from stmmac_hw_setup+0xc1c/0x111c stmmac_hw_setup from __stmmac_open+0x18c/0x434 __stmmac_open from stmmac_open+0x3c/0xbc stmmac_open from __dev_open+0xf4/0x1ac __dev_open from __dev_change_flags+0x1cc/0x224 __dev_change_flags from dev_change_flags+0x24/0x60 dev_change_flags from ip_auto_config+0x2e8/0x11a0 ip_auto_config from do_one_initcall+0x84/0x33c do_one_initcall from kernel_init_freeable+0x1b8/0x214 kernel_init_freeable from kernel_init+0x24/0x140 kernel_init from ret_from_fork+0x14/0x28 Exception stack(0xe0815fb0 to 0xe0815ff8) Prevent this division by 0 by adding an explicit check and error log about the actual issue. While at it, remove the same check from stmmac_ptp_register, which then becomes duplicate | medium |
CVE-2025-38125 | In the Linux kernel, the following vulnerability has been resolved: net: stmmac: make sure that ptp_rate is not 0 before configuring EST If the ptp_rate recorded earlier in the driver happens to be 0, this bogus value will propagate up to EST configuration, where it will trigger a division by 0. Prevent this division by 0 by adding the corresponding check and error code. | medium |
CVE-2025-38124 | In the Linux kernel, the following vulnerability has been resolved: net: fix udp gso skb_segment after pull from frag_list Commit a1e40ac5b5e9 ("net: gso: fix udp gso fraglist segmentation after pull from frag_list") detected invalid geometry in frag_list skbs and redirects them from skb_segment_list to more robust skb_segment. But some packets with modified geometry can also hit bugs in that code. We don't know how many such cases exist. Addressing each one by one also requires touching the complex skb_segment code, which risks introducing bugs for other types of skbs. Instead, linearize all these packets that fail the basic invariants on gso fraglist skbs. That is more robust. If only part of the fraglist payload is pulled into head_skb, it will always cause exception when splitting skbs by skb_segment. For detailed call stack information, see below. Valid SKB_GSO_FRAGLIST skbs - consist of two or more segments - the head_skb holds the protocol headers plus first gso_size - one or more frag_list skbs hold exactly one segment - all but the last must be gso_size Optional datapath hooks such as NAT and BPF (bpf_skb_pull_data) can modify fraglist skbs, breaking these invariants. In extreme cases they pull one part of data into skb linear. For UDP, this causes three payloads with lengths of (11,11,10) bytes were pulled tail to become (12,10,10) bytes. The skbs no longer meets the above SKB_GSO_FRAGLIST conditions because payload was pulled into head_skb, it needs to be linearized before pass to regular skb_segment. skb_segment+0xcd0/0xd14 __udp_gso_segment+0x334/0x5f4 udp4_ufo_fragment+0x118/0x15c inet_gso_segment+0x164/0x338 skb_mac_gso_segment+0xc4/0x13c __skb_gso_segment+0xc4/0x124 validate_xmit_skb+0x9c/0x2c0 validate_xmit_skb_list+0x4c/0x80 sch_direct_xmit+0x70/0x404 __dev_queue_xmit+0x64c/0xe5c neigh_resolve_output+0x178/0x1c4 ip_finish_output2+0x37c/0x47c __ip_finish_output+0x194/0x240 ip_finish_output+0x20/0xf4 ip_output+0x100/0x1a0 NF_HOOK+0xc4/0x16c ip_forward+0x314/0x32c ip_rcv+0x90/0x118 __netif_receive_skb+0x74/0x124 process_backlog+0xe8/0x1a4 __napi_poll+0x5c/0x1f8 net_rx_action+0x154/0x314 handle_softirqs+0x154/0x4b8 [118.376811] [C201134] rxq0_pus: [name:bug&]kernel BUG at net/core/skbuff.c:4278! [118.376829] [C201134] rxq0_pus: [name:traps&]Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP [118.470774] [C201134] rxq0_pus: [name:mrdump&]Kernel Offset: 0x178cc00000 from 0xffffffc008000000 [118.470810] [C201134] rxq0_pus: [name:mrdump&]PHYS_OFFSET: 0x40000000 [118.470827] [C201134] rxq0_pus: [name:mrdump&]pstate: 60400005 (nZCv daif +PAN -UAO) [118.470848] [C201134] rxq0_pus: [name:mrdump&]pc : [0xffffffd79598aefc] skb_segment+0xcd0/0xd14 [118.470900] [C201134] rxq0_pus: [name:mrdump&]lr : [0xffffffd79598a5e8] skb_segment+0x3bc/0xd14 [118.470928] [C201134] rxq0_pus: [name:mrdump&]sp : ffffffc008013770 | medium |
CVE-2025-38123 | In the Linux kernel, the following vulnerability has been resolved: net: wwan: t7xx: Fix napi rx poll issue When driver handles the napi rx polling requests, the netdev might have been released by the dellink logic triggered by the disconnect operation on user plane. However, in the logic of processing skb in polling, an invalid netdev is still being used, which causes a panic. BUG: kernel NULL pointer dereference, address: 00000000000000f1 Oops: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:dev_gro_receive+0x3a/0x620 [...] Call Trace: <IRQ> ? __die_body+0x68/0xb0 ? page_fault_oops+0x379/0x3e0 ? exc_page_fault+0x4f/0xa0 ? asm_exc_page_fault+0x22/0x30 ? __pfx_t7xx_ccmni_recv_skb+0x10/0x10 [mtk_t7xx (HASH:1400 7)] ? dev_gro_receive+0x3a/0x620 napi_gro_receive+0xad/0x170 t7xx_ccmni_recv_skb+0x48/0x70 [mtk_t7xx (HASH:1400 7)] t7xx_dpmaif_napi_rx_poll+0x590/0x800 [mtk_t7xx (HASH:1400 7)] net_rx_action+0x103/0x470 irq_exit_rcu+0x13a/0x310 sysvec_apic_timer_interrupt+0x56/0x90 </IRQ> | medium |
CVE-2025-38122 | In the Linux kernel, the following vulnerability has been resolved: gve: add missing NULL check for gve_alloc_pending_packet() in TX DQO gve_alloc_pending_packet() can return NULL, but gve_tx_add_skb_dqo() did not check for this case before dereferencing the returned pointer. Add a missing NULL check to prevent a potential NULL pointer dereference when allocation fails. This improves robustness in low-memory scenarios. | medium |
CVE-2025-38121 | In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mld: avoid panic on init failure In case of an error during init, in_hw_restart will be set, but it will never get cleared. Instead, we will retry to init again, and then we will act like we are in a restart when we are actually not. This causes (among others) to a NULL pointer dereference when canceling rx_omi::finished_work, that was not even initialized, because we thought that we are in hw_restart. Set in_hw_restart to true only if the fw is running, then we know that FW was loaded successfully and we are not going to the retry loop. | medium |
CVE-2025-38120 | In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_set_pipapo_avx2: fix initial map fill If the first field doesn't cover the entire start map, then we must zero out the remainder, else we leak those bits into the next match round map. The early fix was incomplete and did only fix up the generic C implementation. A followup patch adds a test case to nft_concat_range.sh. | high |
CVE-2025-38119 | In the Linux kernel, the following vulnerability has been resolved: scsi: core: ufs: Fix a hang in the error handler ufshcd_err_handling_prepare() calls ufshcd_rpm_get_sync(). The latter function can only succeed if UFSHCD_EH_IN_PROGRESS is not set because resuming involves submitting a SCSI command and ufshcd_queuecommand() returns SCSI_MLQUEUE_HOST_BUSY if UFSHCD_EH_IN_PROGRESS is set. Fix this hang by setting UFSHCD_EH_IN_PROGRESS after ufshcd_rpm_get_sync() has been called instead of before. Backtrace: __switch_to+0x174/0x338 __schedule+0x600/0x9e4 schedule+0x7c/0xe8 schedule_timeout+0xa4/0x1c8 io_schedule_timeout+0x48/0x70 wait_for_common_io+0xa8/0x160 //waiting on START_STOP wait_for_completion_io_timeout+0x10/0x20 blk_execute_rq+0xe4/0x1e4 scsi_execute_cmd+0x108/0x244 ufshcd_set_dev_pwr_mode+0xe8/0x250 __ufshcd_wl_resume+0x94/0x354 ufshcd_wl_runtime_resume+0x3c/0x174 scsi_runtime_resume+0x64/0xa4 rpm_resume+0x15c/0xa1c __pm_runtime_resume+0x4c/0x90 // Runtime resume ongoing ufshcd_err_handler+0x1a0/0xd08 process_one_work+0x174/0x808 worker_thread+0x15c/0x490 kthread+0xf4/0x1ec ret_from_fork+0x10/0x20 [ bvanassche: rewrote patch description ] | medium |
CVE-2025-38118 | In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix UAF on mgmt_remove_adv_monitor_complete This reworks MGMT_OP_REMOVE_ADV_MONITOR to not use mgmt_pending_add to avoid crashes like bellow: ================================================================== BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_complete+0xe5/0x540 net/bluetooth/mgmt.c:5406 Read of size 8 at addr ffff88801c53f318 by task kworker/u5:5/5341 CPU: 0 UID: 0 PID: 5341 Comm: kworker/u5:5 Not tainted 6.15.0-syzkaller-10402-g4cb6c8af8591 #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xd2/0x2b0 mm/kasan/report.c:521 kasan_report+0x118/0x150 mm/kasan/report.c:634 mgmt_remove_adv_monitor_complete+0xe5/0x540 net/bluetooth/mgmt.c:5406 hci_cmd_sync_work+0x261/0x3a0 net/bluetooth/hci_sync.c:334 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x711/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 5987: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4358 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] mgmt_pending_new+0x65/0x240 net/bluetooth/mgmt_util.c:252 mgmt_pending_add+0x34/0x120 net/bluetooth/mgmt_util.c:279 remove_adv_monitor+0x103/0x1b0 net/bluetooth/mgmt.c:5454 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:727 sock_write_iter+0x258/0x330 net/socket.c:1131 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x548/0xa90 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 5989: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2380 [inline] slab_free mm/slub.c:4642 [inline] kfree+0x18e/0x440 mm/slub.c:4841 mgmt_pending_foreach+0xc9/0x120 net/bluetooth/mgmt_util.c:242 mgmt_index_removed+0x10d/0x2f0 net/bluetooth/mgmt.c:9366 hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314 __sys_bind_socket net/socket.c:1810 [inline] __sys_bind+0x2c3/0x3e0 net/socket.c:1841 __do_sys_bind net/socket.c:1846 [inline] __se_sys_bind net/socket.c:1844 [inline] __x64_sys_bind+0x7a/0x90 net/socket.c:1844 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f | high |
CVE-2025-38117 | In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Protect mgmt_pending list with its own lock This uses a mutex to protect from concurrent access of mgmt_pending list which can cause crashes like: ================================================================== BUG: KASAN: slab-use-after-free in hci_sock_get_channel+0x60/0x68 net/bluetooth/hci_sock.c:91 Read of size 2 at addr ffff0000c48885b2 by task syz.4.334/7318 CPU: 0 UID: 0 PID: 7318 Comm: syz.4.334 Not tainted 6.15.0-rc7-syzkaller-g187899f4124a #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 Call trace: show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:466 (C) __dump_stack+0x30/0x40 lib/dump_stack.c:94 dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120 print_address_description+0xa8/0x254 mm/kasan/report.c:408 print_report+0x68/0x84 mm/kasan/report.c:521 kasan_report+0xb0/0x110 mm/kasan/report.c:634 __asan_report_load2_noabort+0x20/0x2c mm/kasan/report_generic.c:379 hci_sock_get_channel+0x60/0x68 net/bluetooth/hci_sock.c:91 mgmt_pending_find+0x7c/0x140 net/bluetooth/mgmt_util.c:223 pending_find net/bluetooth/mgmt.c:947 [inline] remove_adv_monitor+0x44/0x1a4 net/bluetooth/mgmt.c:5445 hci_mgmt_cmd+0x780/0xc00 net/bluetooth/hci_sock.c:1712 hci_sock_sendmsg+0x544/0xbb0 net/bluetooth/hci_sock.c:1832 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg net/socket.c:727 [inline] sock_write_iter+0x25c/0x378 net/socket.c:1131 new_sync_write fs/read_write.c:591 [inline] vfs_write+0x62c/0x97c fs/read_write.c:684 ksys_write+0x120/0x210 fs/read_write.c:736 __do_sys_write fs/read_write.c:747 [inline] __se_sys_write fs/read_write.c:744 [inline] __arm64_sys_write+0x7c/0x90 fs/read_write.c:744 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 Allocated by task 7037: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x40/0x78 mm/kasan/common.c:68 kasan_save_alloc_info+0x44/0x54 mm/kasan/generic.c:562 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x9c/0xb4 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4327 [inline] __kmalloc_noprof+0x2fc/0x4c8 mm/slub.c:4339 kmalloc_noprof include/linux/slab.h:909 [inline] sk_prot_alloc+0xc4/0x1f0 net/core/sock.c:2198 sk_alloc+0x44/0x3ac net/core/sock.c:2254 bt_sock_alloc+0x4c/0x300 net/bluetooth/af_bluetooth.c:148 hci_sock_create+0xa8/0x194 net/bluetooth/hci_sock.c:2202 bt_sock_create+0x14c/0x24c net/bluetooth/af_bluetooth.c:132 __sock_create+0x43c/0x91c net/socket.c:1541 sock_create net/socket.c:1599 [inline] __sys_socket_create net/socket.c:1636 [inline] __sys_socket+0xd4/0x1c0 net/socket.c:1683 __do_sys_socket net/socket.c:1697 [inline] __se_sys_socket net/socket.c:1695 [inline] __arm64_sys_socket+0x7c/0x94 net/socket.c:1695 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 Freed by task 6607: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x40/0x78 mm/kasan/common.c:68 kasan_save_free_info+0x58/0x70 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x68/0x88 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline ---truncated--- | high |
CVE-2025-38116 | In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix uaf in ath12k_core_init() When the execution of ath12k_core_hw_group_assign() or ath12k_core_hw_group_create() fails, the registered notifier chain is not unregistered properly. Its memory is freed after rmmod, which may trigger to a use-after-free (UAF) issue if there is a subsequent access to this notifier chain. Fixes the issue by calling ath12k_core_panic_notifier_unregister() in failure cases. Call trace: notifier_chain_register+0x4c/0x1f0 (P) atomic_notifier_chain_register+0x38/0x68 ath12k_core_init+0x50/0x4e8 [ath12k] ath12k_pci_probe+0x5f8/0xc28 [ath12k] pci_device_probe+0xbc/0x1a8 really_probe+0xc8/0x3a0 __driver_probe_device+0x84/0x1b0 driver_probe_device+0x44/0x130 __driver_attach+0xcc/0x208 bus_for_each_dev+0x84/0x100 driver_attach+0x2c/0x40 bus_add_driver+0x130/0x260 driver_register+0x70/0x138 __pci_register_driver+0x68/0x80 ath12k_pci_init+0x30/0x68 [ath12k] ath12k_init+0x28/0x78 [ath12k] Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3 | high |
CVE-2025-38115 | In the Linux kernel, the following vulnerability has been resolved: net_sched: sch_sfq: fix a potential crash on gso_skb handling SFQ has an assumption of always being able to queue at least one packet. However, after the blamed commit, sch->q.len can be inflated by packets in sch->gso_skb, and an enqueue() on an empty SFQ qdisc can be followed by an immediate drop. Fix sfq_drop() to properly clear q->tail in this situation. ip netns add lb ip link add dev to-lb type veth peer name in-lb netns lb ethtool -K to-lb tso off # force qdisc to requeue gso_skb ip netns exec lb ethtool -K in-lb gro on # enable NAPI ip link set dev to-lb up ip -netns lb link set dev in-lb up ip addr add dev to-lb 192.168.20.1/24 ip -netns lb addr add dev in-lb 192.168.20.2/24 tc qdisc replace dev to-lb root sfq limit 100 ip netns exec lb netserver netperf -H 192.168.20.2 -l 100 & netperf -H 192.168.20.2 -l 100 & netperf -H 192.168.20.2 -l 100 & netperf -H 192.168.20.2 -l 100 & | high |
CVE-2025-38114 | In the Linux kernel, the following vulnerability has been resolved: e1000: Move cancel_work_sync to avoid deadlock Previously, e1000_down called cancel_work_sync for the e1000 reset task (via e1000_down_and_stop), which takes RTNL. As reported by users and syzbot, a deadlock is possible in the following scenario: CPU 0: - RTNL is held - e1000_close - e1000_down - cancel_work_sync (cancel / wait for e1000_reset_task()) CPU 1: - process_one_work - e1000_reset_task - take RTNL To remedy this, avoid calling cancel_work_sync from e1000_down (e1000_reset_task does nothing if the device is down anyway). Instead, call cancel_work_sync for e1000_reset_task when the device is being removed. | medium |
CVE-2025-38113 | In the Linux kernel, the following vulnerability has been resolved: ACPI: CPPC: Fix NULL pointer dereference when nosmp is used With nosmp in cmdline, other CPUs are not brought up, leaving their cpc_desc_ptr NULL. CPU0's iteration via for_each_possible_cpu() dereferences these NULL pointers, causing panic. Panic backtrace: [ 0.401123] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000b8 ... [ 0.403255] [<ffffffff809a5818>] cppc_allow_fast_switch+0x6a/0xd4 ... Kernel panic - not syncing: Attempted to kill init! [ rjw: New subject ] | medium |
CVE-2025-38112 | In the Linux kernel, the following vulnerability has been resolved: net: Fix TOCTOU issue in sk_is_readable() sk->sk_prot->sock_is_readable is a valid function pointer when sk resides in a sockmap. After the last sk_psock_put() (which usually happens when socket is removed from sockmap), sk->sk_prot gets restored and sk->sk_prot->sock_is_readable becomes NULL. This makes sk_is_readable() racy, if the value of sk->sk_prot is reloaded after the initial check. Which in turn may lead to a null pointer dereference. Ensure the function pointer does not turn NULL after the check. | medium |
CVE-2025-38111 | In the Linux kernel, the following vulnerability has been resolved: net/mdiobus: Fix potential out-of-bounds read/write access When using publicly available tools like 'mdio-tools' to read/write data from/to network interface and its PHY via mdiobus, there is no verification of parameters passed to the ioctl and it accepts any mdio address. Currently there is support for 32 addresses in kernel via PHY_MAX_ADDR define, but it is possible to pass higher value than that via ioctl. While read/write operation should generally fail in this case, mdiobus provides stats array, where wrong address may allow out-of-bounds read/write. Fix that by adding address verification before read/write operation. While this excludes this access from any statistics, it improves security of read/write operation. | high |
CVE-2025-38110 | In the Linux kernel, the following vulnerability has been resolved: net/mdiobus: Fix potential out-of-bounds clause 45 read/write access When using publicly available tools like 'mdio-tools' to read/write data from/to network interface and its PHY via C45 (clause 45) mdiobus, there is no verification of parameters passed to the ioctl and it accepts any mdio address. Currently there is support for 32 addresses in kernel via PHY_MAX_ADDR define, but it is possible to pass higher value than that via ioctl. While read/write operation should generally fail in this case, mdiobus provides stats array, where wrong address may allow out-of-bounds read/write. Fix that by adding address verification before C45 read/write operation. While this excludes this access from any statistics, it improves security of read/write operation. | high |
CVE-2025-38109 | In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix ECVF vports unload on shutdown flow Fix shutdown flow UAF when a virtual function is created on the embedded chip (ECVF) of a BlueField device. In such case the vport acl ingress table is not properly destroyed. ECVF functionality is independent of ecpf_vport_exists capability and thus functions mlx5_eswitch_(enable|disable)_pf_vf_vports() should not test it when enabling/disabling ECVF vports. kernel log: [] refcount_t: underflow; use-after-free. [] WARNING: CPU: 3 PID: 1 at lib/refcount.c:28 refcount_warn_saturate+0x124/0x220 ---------------- [] Call trace: [] refcount_warn_saturate+0x124/0x220 [] tree_put_node+0x164/0x1e0 [mlx5_core] [] mlx5_destroy_flow_table+0x98/0x2c0 [mlx5_core] [] esw_acl_ingress_table_destroy+0x28/0x40 [mlx5_core] [] esw_acl_ingress_lgcy_cleanup+0x80/0xf4 [mlx5_core] [] esw_legacy_vport_acl_cleanup+0x44/0x60 [mlx5_core] [] esw_vport_cleanup+0x64/0x90 [mlx5_core] [] mlx5_esw_vport_disable+0xc0/0x1d0 [mlx5_core] [] mlx5_eswitch_unload_ec_vf_vports+0xcc/0x150 [mlx5_core] [] mlx5_eswitch_disable_sriov+0x198/0x2a0 [mlx5_core] [] mlx5_device_disable_sriov+0xb8/0x1e0 [mlx5_core] [] mlx5_sriov_detach+0x40/0x50 [mlx5_core] [] mlx5_unload+0x40/0xc4 [mlx5_core] [] mlx5_unload_one_devl_locked+0x6c/0xe4 [mlx5_core] [] mlx5_unload_one+0x3c/0x60 [mlx5_core] [] shutdown+0x7c/0xa4 [mlx5_core] [] pci_device_shutdown+0x3c/0xa0 [] device_shutdown+0x170/0x340 [] __do_sys_reboot+0x1f4/0x2a0 [] __arm64_sys_reboot+0x2c/0x40 [] invoke_syscall+0x78/0x100 [] el0_svc_common.constprop.0+0x54/0x184 [] do_el0_svc+0x30/0xac [] el0_svc+0x48/0x160 [] el0t_64_sync_handler+0xa4/0x12c [] el0t_64_sync+0x1a4/0x1a8 [] --[ end trace 9c4601d68c70030e ]--- | high |
CVE-2025-38108 | In the Linux kernel, the following vulnerability has been resolved: net_sched: red: fix a race in __red_change() Gerrard Tai reported a race condition in RED, whenever SFQ perturb timer fires at the wrong time. The race is as follows: CPU 0 CPU 1 [1]: lock root [2]: qdisc_tree_flush_backlog() [3]: unlock root | | [5]: lock root | [6]: rehash | [7]: qdisc_tree_reduce_backlog() | [4]: qdisc_put() This can be abused to underflow a parent's qlen. Calling qdisc_purge_queue() instead of qdisc_tree_flush_backlog() should fix the race, because all packets will be purged from the qdisc before releasing the lock. | medium |
CVE-2025-38107 | In the Linux kernel, the following vulnerability has been resolved: net_sched: ets: fix a race in ets_qdisc_change() Gerrard Tai reported a race condition in ETS, whenever SFQ perturb timer fires at the wrong time. The race is as follows: CPU 0 CPU 1 [1]: lock root [2]: qdisc_tree_flush_backlog() [3]: unlock root | | [5]: lock root | [6]: rehash | [7]: qdisc_tree_reduce_backlog() | [4]: qdisc_put() This can be abused to underflow a parent's qlen. Calling qdisc_purge_queue() instead of qdisc_tree_flush_backlog() should fix the race, because all packets will be purged from the qdisc before releasing the lock. | medium |
CVE-2025-38106 | In the Linux kernel, the following vulnerability has been resolved: io_uring: fix use-after-free of sq->thread in __io_uring_show_fdinfo() syzbot reports: BUG: KASAN: slab-use-after-free in getrusage+0x1109/0x1a60 Read of size 8 at addr ffff88810de2d2c8 by task a.out/304 CPU: 0 UID: 0 PID: 304 Comm: a.out Not tainted 6.16.0-rc1 #1 PREEMPT(voluntary) Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x53/0x70 print_report+0xd0/0x670 ? __pfx__raw_spin_lock_irqsave+0x10/0x10 ? getrusage+0x1109/0x1a60 kasan_report+0xce/0x100 ? getrusage+0x1109/0x1a60 getrusage+0x1109/0x1a60 ? __pfx_getrusage+0x10/0x10 __io_uring_show_fdinfo+0x9fe/0x1790 ? ksys_read+0xf7/0x1c0 ? do_syscall_64+0xa4/0x260 ? vsnprintf+0x591/0x1100 ? __pfx___io_uring_show_fdinfo+0x10/0x10 ? __pfx_vsnprintf+0x10/0x10 ? mutex_trylock+0xcf/0x130 ? __pfx_mutex_trylock+0x10/0x10 ? __pfx_show_fd_locks+0x10/0x10 ? io_uring_show_fdinfo+0x57/0x80 io_uring_show_fdinfo+0x57/0x80 seq_show+0x38c/0x690 seq_read_iter+0x3f7/0x1180 ? inode_set_ctime_current+0x160/0x4b0 seq_read+0x271/0x3e0 ? __pfx_seq_read+0x10/0x10 ? __pfx__raw_spin_lock+0x10/0x10 ? __mark_inode_dirty+0x402/0x810 ? selinux_file_permission+0x368/0x500 ? file_update_time+0x10f/0x160 vfs_read+0x177/0xa40 ? __pfx___handle_mm_fault+0x10/0x10 ? __pfx_vfs_read+0x10/0x10 ? mutex_lock+0x81/0xe0 ? __pfx_mutex_lock+0x10/0x10 ? fdget_pos+0x24d/0x4b0 ksys_read+0xf7/0x1c0 ? __pfx_ksys_read+0x10/0x10 ? do_user_addr_fault+0x43b/0x9c0 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f0f74170fc9 Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 8 RSP: 002b:00007fffece049e8 EFLAGS: 00000206 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f0f74170fc9 RDX: 0000000000001000 RSI: 00007fffece049f0 RDI: 0000000000000004 RBP: 00007fffece05ad0 R08: 0000000000000000 R09: 00007fffece04d90 R10: 0000000000000000 R11: 0000000000000206 R12: 00005651720a1100 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> Allocated by task 298: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x6e/0x70 kmem_cache_alloc_node_noprof+0xe8/0x330 copy_process+0x376/0x5e00 create_io_thread+0xab/0xf0 io_sq_offload_create+0x9ed/0xf20 io_uring_setup+0x12b0/0x1cc0 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 22: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x37/0x50 kmem_cache_free+0xc4/0x360 rcu_core+0x5ff/0x19f0 handle_softirqs+0x18c/0x530 run_ksoftirqd+0x20/0x30 smpboot_thread_fn+0x287/0x6c0 kthread+0x30d/0x630 ret_from_fork+0xef/0x1a0 ret_from_fork_asm+0x1a/0x30 Last potentially related work creation: kasan_save_stack+0x33/0x60 kasan_record_aux_stack+0x8c/0xa0 __call_rcu_common.constprop.0+0x68/0x940 __schedule+0xff2/0x2930 __cond_resched+0x4c/0x80 mutex_lock+0x5c/0xe0 io_uring_del_tctx_node+0xe1/0x2b0 io_uring_clean_tctx+0xb7/0x160 io_uring_cancel_generic+0x34e/0x760 do_exit+0x240/0x2350 do_group_exit+0xab/0x220 __x64_sys_exit_group+0x39/0x40 x64_sys_call+0x1243/0x1840 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x77/0x7f The buggy address belongs to the object at ffff88810de2cb00 which belongs to the cache task_struct of size 3712 The buggy address is located 1992 bytes inside of freed 3712-byte region [ffff88810de2cb00, ffff88810de2d980) which is caused by the task_struct pointed to by sq->thread being released while it is being used in the function __io_uring_show_fdinfo(). Holding ctx->uring_lock does not prevent ehre relase or exit of sq->thread. Fix this by assigning and looking up ->thread under RCU, and grabbing a reference to the task_struct. This e ---truncated--- | high |
CVE-2025-38105 | In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Kill timer properly at removal The USB-audio MIDI code initializes the timer, but in a rare case, the driver might be freed without the disconnect call. This leaves the timer in an active state while the assigned object is released via snd_usbmidi_free(), which ends up with a kernel warning when the debug configuration is enabled, as spotted by fuzzer. For avoiding the problem, put timer_shutdown_sync() at snd_usbmidi_free(), so that the timer can be killed properly. While we're at it, replace the existing timer_delete_sync() at the disconnect callback with timer_shutdown_sync(), too. | medium |
CVE-2025-38103 | In the Linux kernel, the following vulnerability has been resolved: HID: usbhid: Eliminate recurrent out-of-bounds bug in usbhid_parse() Update struct hid_descriptor to better reflect the mandatory and optional parts of the HID Descriptor as per USB HID 1.11 specification. Note: the kernel currently does not parse any optional HID class descriptors, only the mandatory report descriptor. Update all references to member element desc[0] to rpt_desc. Add test to verify bLength and bNumDescriptors values are valid. Replace the for loop with direct access to the mandatory HID class descriptor member for the report descriptor. This eliminates the possibility of getting an out-of-bounds fault. Add a warning message if the HID descriptor contains any unsupported optional HID class descriptors. | high |
CVE-2025-38102 | In the Linux kernel, the following vulnerability has been resolved: VMCI: fix race between vmci_host_setup_notify and vmci_ctx_unset_notify During our test, it is found that a warning can be trigger in try_grab_folio as follow: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1678 at mm/gup.c:147 try_grab_folio+0x106/0x130 Modules linked in: CPU: 0 UID: 0 PID: 1678 Comm: syz.3.31 Not tainted 6.15.0-rc5 #163 PREEMPT(undef) RIP: 0010:try_grab_folio+0x106/0x130 Call Trace: <TASK> follow_huge_pmd+0x240/0x8e0 follow_pmd_mask.constprop.0.isra.0+0x40b/0x5c0 follow_pud_mask.constprop.0.isra.0+0x14a/0x170 follow_page_mask+0x1c2/0x1f0 __get_user_pages+0x176/0x950 __gup_longterm_locked+0x15b/0x1060 ? gup_fast+0x120/0x1f0 gup_fast_fallback+0x17e/0x230 get_user_pages_fast+0x5f/0x80 vmci_host_unlocked_ioctl+0x21c/0xf80 RIP: 0033:0x54d2cd ---[ end trace 0000000000000000 ]--- Digging into the source, context->notify_page may init by get_user_pages_fast and can be seen in vmci_ctx_unset_notify which will try to put_page. However get_user_pages_fast is not finished here and lead to following try_grab_folio warning. The race condition is shown as follow: cpu0 cpu1 vmci_host_do_set_notify vmci_host_setup_notify get_user_pages_fast(uva, 1, FOLL_WRITE, &context->notify_page); lockless_pages_from_mm gup_pgd_range gup_huge_pmd // update &context->notify_page vmci_host_do_set_notify vmci_ctx_unset_notify notify_page = context->notify_page; if (notify_page) put_page(notify_page); // page is freed __gup_longterm_locked __get_user_pages follow_trans_huge_pmd try_grab_folio // warn here To slove this, use local variable page to make notify_page can be seen after finish get_user_pages_fast. | medium |