Newest CVEs

IDDescriptionSeverity
CVE-2025-68300In the Linux kernel, the following vulnerability has been resolved: fs/namespace: fix reference leak in grab_requested_mnt_ns lookup_mnt_ns() already takes a reference on mnt_ns. grab_requested_mnt_ns() doesn't need to take an extra reference.
high
CVE-2025-68299In the Linux kernel, the following vulnerability has been resolved: afs: Fix delayed allocation of a cell's anonymous key The allocation of a cell's anonymous key is done in a background thread along with other cell setup such as doing a DNS upcall. In the reported bug, this is triggered by afs_parse_source() parsing the device name given to mount() and calling afs_lookup_cell() with the name of the cell. The normal key lookup then tries to use the key description on the anonymous authentication key as the reference for request_key() - but it may not yet be set and so an oops can happen. This has been made more likely to happen by the fix for dynamic lookup failure. Fix this by firstly allocating a reference name and attaching it to the afs_cell record when the record is created. It can share the memory allocation with the cell name (unfortunately it can't just overlap the cell name by prepending it with "afs@" as the cell name already has a '.' prepended for other purposes). This reference name is then passed to request_key(). Secondly, the anon key is now allocated on demand at the point a key is requested in afs_request_key() if it is not already allocated. A mutex is used to prevent multiple allocation for a cell. Thirdly, make afs_request_key_rcu() return NULL if the anonymous key isn't yet allocated (if we need it) and then the caller can return -ECHILD to drop out of RCU-mode and afs_request_key() can be called. Note that the anonymous key is kind of necessary to make the key lookup cache work as that doesn't currently cache a negative lookup, but it's probably worth some investigation to see if NULL can be used instead.
medium
CVE-2025-68298In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: Avoid btusb_mtk_claim_iso_intf() NULL deref In btusb_mtk_setup(), we set `btmtk_data->isopkt_intf` to: usb_ifnum_to_if(data->udev, MTK_ISO_IFNUM) That function can return NULL in some cases. Even when it returns NULL, though, we still go on to call btusb_mtk_claim_iso_intf(). As of commit e9087e828827 ("Bluetooth: btusb: mediatek: Add locks for usb_driver_claim_interface()"), calling btusb_mtk_claim_iso_intf() when `btmtk_data->isopkt_intf` is NULL will cause a crash because we'll end up passing a bad pointer to device_lock(). Prior to that commit we'd pass the NULL pointer directly to usb_driver_claim_interface() which would detect it and return an error, which was handled. Resolve the crash in btusb_mtk_claim_iso_intf() by adding a NULL check at the start of the function. This makes the code handle a NULL `btmtk_data->isopkt_intf` the same way it did before the problematic commit (just with a slight change to the error message printed).
medium
CVE-2025-68297In the Linux kernel, the following vulnerability has been resolved: ceph: fix crash in process_v2_sparse_read() for encrypted directories The crash in process_v2_sparse_read() for fscrypt-encrypted directories has been reported. Issue takes place for Ceph msgr2 protocol in secure mode. It can be reproduced by the steps: sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure (1) mkdir /mnt/cephfs/fscrypt-test-3 (2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3 (3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3 (4) fscrypt lock /mnt/cephfs/fscrypt-test-3 (5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3 (6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar (7) Issue has been triggered [ 408.072247] ------------[ cut here ]------------ [ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865 ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore [ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+ [ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-5.fc42 04/01/2014 [ 408.072310] Workqueue: ceph-msgr ceph_con_workfn [ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8 8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06 fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85 [ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246 [ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38 [ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8 [ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8 [ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000 [ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000) knlGS:0000000000000000 [ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0 [ 408.072336] PKRU: 55555554 [ 408.072337] Call Trace: [ 408.072338] <TASK> [ 408.072340] ? sched_clock_noinstr+0x9/0x10 [ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10 [ 408.072347] ? _raw_spin_unlock+0xe/0x40 [ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830 [ 408.072353] ? __kasan_check_write+0x14/0x30 [ 408.072357] ? mutex_lock+0x84/0xe0 [ 408.072359] ? __pfx_mutex_lock+0x10/0x10 [ 408.072361] ceph_con_workfn+0x27e/0x10e0 [ 408.072364] ? metric_delayed_work+0x311/0x2c50 [ 408.072367] process_one_work+0x611/0xe20 [ 408.072371] ? __kasan_check_write+0x14/0x30 [ 408.072373] worker_thread+0x7e3/0x1580 [ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 408.072378] ? __pfx_worker_thread+0x10/0x10 [ 408.072381] kthread+0x381/0x7a0 [ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 408.072385] ? __pfx_kthread+0x10/0x10 [ 408.072387] ? __kasan_check_write+0x14/0x30 [ 408.072389] ? recalc_sigpending+0x160/0x220 [ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50 [ 408.072394] ? calculate_sigpending+0x78/0xb0 [ 408.072395] ? __pfx_kthread+0x10/0x10 [ 408.072397] ret_from_fork+0x2b6/0x380 [ 408.072400] ? __pfx_kthread+0x10/0x10 [ 408.072402] ret_from_fork_asm+0x1a/0x30 [ 408.072406] </TASK> [ 408.072407] ---[ end trace 0000000000000000 ]--- [ 408.072418] Oops: general protection fault, probably for non-canonical address 0xdffffc00000000 ---truncated---
medium
CVE-2025-68296In the Linux kernel, the following vulnerability has been resolved: drm, fbcon, vga_switcheroo: Avoid race condition in fbcon setup Protect vga_switcheroo_client_fb_set() with console lock. Avoids OOB access in fbcon_remap_all(). Without holding the console lock the call races with switching outputs. VGA switcheroo calls fbcon_remap_all() when switching clients. The fbcon function uses struct fb_info.node, which is set by register_framebuffer(). As the fb-helper code currently sets up VGA switcheroo before registering the framebuffer, the value of node is -1 and therefore not a legal value. For example, fbcon uses the value within set_con2fb_map() [1] as an index into an array. Moving vga_switcheroo_client_fb_set() after register_framebuffer() can result in VGA switching that does not switch fbcon correctly. Therefore move vga_switcheroo_client_fb_set() under fbcon_fb_registered(), which already holds the console lock. Fbdev calls fbcon_fb_registered() from within register_framebuffer(). Serializes the helper with VGA switcheroo's call to fbcon_remap_all(). Although vga_switcheroo_client_fb_set() takes an instance of struct fb_info as parameter, it really only needs the contained fbcon state. Moving the call to fbcon initialization is therefore cleaner than before. Only amdgpu, i915, nouveau and radeon support vga_switcheroo. For all other drivers, this change does nothing.
medium
CVE-2025-68295In the Linux kernel, the following vulnerability has been resolved: smb: client: fix memory leak in cifs_construct_tcon() When having a multiuser mount with domain= specified and using cifscreds, cifs_set_cifscreds() will end up setting @ctx->domainname, so it needs to be freed before leaving cifs_construct_tcon(). This fixes the following memory leak reported by kmemleak: mount.cifs //srv/share /mnt -o domain=ZELDA,multiuser,... su - testuser cifscreds add -d ZELDA -u testuser ... ls /mnt/1 ... umount /mnt echo scan > /sys/kernel/debug/kmemleak cat /sys/kernel/debug/kmemleak unreferenced object 0xffff8881203c3f08 (size 8): comm "ls", pid 5060, jiffies 4307222943 hex dump (first 8 bytes): 5a 45 4c 44 41 00 cc cc ZELDA... backtrace (crc d109a8cf): __kmalloc_node_track_caller_noprof+0x572/0x710 kstrdup+0x3a/0x70 cifs_sb_tlink+0x1209/0x1770 [cifs] cifs_get_fattr+0xe1/0xf50 [cifs] cifs_get_inode_info+0xb5/0x240 [cifs] cifs_revalidate_dentry_attr+0x2d1/0x470 [cifs] cifs_getattr+0x28e/0x450 [cifs] vfs_getattr_nosec+0x126/0x180 vfs_statx+0xf6/0x220 do_statx+0xab/0x110 __x64_sys_statx+0xd5/0x130 do_syscall_64+0xbb/0x380 entry_SYSCALL_64_after_hwframe+0x77/0x7f
medium
CVE-2025-68294In the Linux kernel, the following vulnerability has been resolved: io_uring/net: ensure vectored buffer node import is tied to notification When support for vectored registered buffers was added, the import itself is using 'req' rather than the notification io_kiocb, sr->notif. For non-vectored imports, sr->notif is correctly used. This is important as the lifetime of the two may be different. Use the correct io_kiocb for the vectored buffer import.
high
CVE-2025-68293In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: fix NULL pointer deference when splitting folio Commit c010d47f107f ("mm: thp: split huge page to any lower order pages") introduced an early check on the folio's order via mapping->flags before proceeding with the split work. This check introduced a bug: for shmem folios in the swap cache and truncated folios, the mapping pointer can be NULL. Accessing mapping->flags in this state leads directly to a NULL pointer dereference. This commit fixes the issue by moving the check for mapping != NULL before any attempt to access mapping->flags.
medium
CVE-2025-68292In the Linux kernel, the following vulnerability has been resolved: mm/memfd: fix information leak in hugetlb folios When allocating hugetlb folios for memfd, three initialization steps are missing: 1. Folios are not zeroed, leading to kernel memory disclosure to userspace 2. Folios are not marked uptodate before adding to page cache 3. hugetlb_fault_mutex is not taken before hugetlb_add_to_page_cache() The memfd allocation path bypasses the normal page fault handler (hugetlb_no_page) which would handle all of these initialization steps. This is problematic especially for udmabuf use cases where folios are pinned and directly accessed by userspace via DMA. Fix by matching the initialization pattern used in hugetlb_no_page(): - Zero the folio using folio_zero_user() which is optimized for huge pages - Mark it uptodate with folio_mark_uptodate() - Take hugetlb_fault_mutex before adding to page cache to prevent races The folio_zero_user() change also fixes a potential security issue where uninitialized kernel memory could be disclosed to userspace through read() or mmap() operations on the memfd.
medium
CVE-2025-68291In the Linux kernel, the following vulnerability has been resolved: mptcp: Initialise rcv_mss before calling tcp_send_active_reset() in mptcp_do_fastclose(). syzbot reported divide-by-zero in __tcp_select_window() by MPTCP socket. [0] We had a similar issue for the bare TCP and fixed in commit 499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead of 0"). Let's apply the same fix to mptcp_do_fastclose(). [0]: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 6068 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 RIP: 0010:__tcp_select_window+0x824/0x1320 net/ipv4/tcp_output.c:3336 Code: ff ff ff 44 89 f1 d3 e0 89 c1 f7 d1 41 01 cc 41 21 c4 e9 a9 00 00 00 e8 ca 49 01 f8 e9 9c 00 00 00 e8 c0 49 01 f8 44 89 e0 99 <f7> 7c 24 1c 41 29 d4 48 bb 00 00 00 00 00 fc ff df e9 80 00 00 00 RSP: 0018:ffffc90003017640 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88807b469e40 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90003017730 R08: ffff888033268143 R09: 1ffff1100664d028 R10: dffffc0000000000 R11: ffffed100664d029 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 000055557faa0500(0000) GS:ffff888126135000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f64a1912ff8 CR3: 0000000072122000 CR4: 00000000003526f0 Call Trace: <TASK> tcp_select_window net/ipv4/tcp_output.c:281 [inline] __tcp_transmit_skb+0xbc7/0x3aa0 net/ipv4/tcp_output.c:1568 tcp_transmit_skb net/ipv4/tcp_output.c:1649 [inline] tcp_send_active_reset+0x2d1/0x5b0 net/ipv4/tcp_output.c:3836 mptcp_do_fastclose+0x27e/0x380 net/mptcp/protocol.c:2793 mptcp_disconnect+0x238/0x710 net/mptcp/protocol.c:3253 mptcp_sendmsg_fastopen+0x2f8/0x580 net/mptcp/protocol.c:1776 mptcp_sendmsg+0x1774/0x1980 net/mptcp/protocol.c:1855 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0xe5/0x270 net/socket.c:742 __sys_sendto+0x3bd/0x520 net/socket.c:2244 __do_sys_sendto net/socket.c:2251 [inline] __se_sys_sendto net/socket.c:2247 [inline] __x64_sys_sendto+0xde/0x100 net/socket.c:2247 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f66e998f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffff9acedb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f66e9be5fa0 RCX: 00007f66e998f749 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007ffff9acee10 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 00007f66e9be5fa0 R14: 00007f66e9be5fa0 R15: 0000000000000006 </TASK>
medium
CVE-2025-68290In the Linux kernel, the following vulnerability has been resolved: most: usb: fix double free on late probe failure The MOST subsystem has a non-standard registration function which frees the interface on registration failures and on deregistration. This unsurprisingly leads to bugs in the MOST drivers, and a couple of recent changes turned a reference underflow and use-after-free in the USB driver into several double free and a use-after-free on late probe failures.
high
CVE-2025-68289In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_eem: Fix memory leak in eem_unwrap The existing code did not handle the failure case of usb_ep_queue in the command path, potentially leading to memory leaks. Improve error handling to free all allocated resources on usb_ep_queue failure. This patch continues to use goto logic for error handling, as the existing error handling is complex and not easily adaptable to auto-cleanup helpers. kmemleak results: unreferenced object 0xffffff895a512300 (size 240): backtrace: slab_post_alloc_hook+0xbc/0x3a4 kmem_cache_alloc+0x1b4/0x358 skb_clone+0x90/0xd8 eem_unwrap+0x1cc/0x36c unreferenced object 0xffffff8a157f4000 (size 256): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc kmalloc_trace+0x48/0x140 dwc3_gadget_ep_alloc_request+0x58/0x11c usb_ep_alloc_request+0x40/0xe4 eem_unwrap+0x204/0x36c unreferenced object 0xffffff8aadbaac00 (size 128): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc __kmalloc+0x64/0x1a8 eem_unwrap+0x218/0x36c unreferenced object 0xffffff89ccef3500 (size 64): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc kmalloc_trace+0x48/0x140 eem_unwrap+0x238/0x36c
medium
CVE-2025-68288In the Linux kernel, the following vulnerability has been resolved: usb: storage: Fix memory leak in USB bulk transport A kernel memory leak was identified by the 'ioctl_sg01' test from Linux Test Project (LTP). The following bytes were mainly observed: 0x53425355. When USB storage devices incorrectly skip the data phase with status data, the code extracts/validates the CSW from the sg buffer, but fails to clear it afterwards. This leaves status protocol data in srb's transfer buffer, such as the US_BULK_CS_SIGN 'USBS' signature observed here. Thus, this can lead to USB protocols leaks to user space through SCSI generic (/dev/sg*) interfaces, such as the one seen here when the LTP test requested 512 KiB. Fix the leak by zeroing the CSW data in srb's transfer buffer immediately after the validation of devices that skip data phase. Note: Differently from CVE-2018-1000204, which fixed a big leak by zero- ing pages at allocation time, this leak occurs after allocation, when USB protocol data is written to already-allocated sg pages.
medium
CVE-2025-68287In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: Fix race condition between concurrent dwc3_remove_requests() call paths This patch addresses a race condition caused by unsynchronized execution of multiple call paths invoking `dwc3_remove_requests()`, leading to premature freeing of USB requests and subsequent crashes. Three distinct execution paths interact with `dwc3_remove_requests()`: Path 1: Triggered via `dwc3_gadget_reset_interrupt()` during USB reset handling. The call stack includes: - `dwc3_ep0_reset_state()` - `dwc3_ep0_stall_and_restart()` - `dwc3_ep0_out_start()` - `dwc3_remove_requests()` - `dwc3_gadget_del_and_unmap_request()` Path 2: Also initiated from `dwc3_gadget_reset_interrupt()`, but through `dwc3_stop_active_transfers()`. The call stack includes: - `dwc3_stop_active_transfers()` - `dwc3_remove_requests()` - `dwc3_gadget_del_and_unmap_request()` Path 3: Occurs independently during `adb root` execution, which triggers USB function unbind and bind operations. The sequence includes: - `gserial_disconnect()` - `usb_ep_disable()` - `dwc3_gadget_ep_disable()` - `dwc3_remove_requests()` with `-ESHUTDOWN` status Path 3 operates asynchronously and lacks synchronization with Paths 1 and 2. When Path 3 completes, it disables endpoints and frees 'out' requests. If Paths 1 or 2 are still processing these requests, accessing freed memory leads to a crash due to use-after-free conditions. To fix this added check for request completion and skip processing if already completed and added the request status for ep0 while queue.
high
CVE-2025-68286In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check NULL before accessing [WHAT] IGT kms_cursor_legacy's long-nonblocking-modeset-vs-cursor-atomic fails with NULL pointer dereference. This can be reproduced with both an eDP panel and a DP monitors connected. BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 13 UID: 0 PID: 2960 Comm: kms_cursor_lega Not tainted 6.16.0-99-custom #8 PREEMPT(voluntary) Hardware name: AMD ........ RIP: 0010:dc_stream_get_scanoutpos+0x34/0x130 [amdgpu] Code: 57 4d 89 c7 41 56 49 89 ce 41 55 49 89 d5 41 54 49 89 fc 53 48 83 ec 18 48 8b 87 a0 64 00 00 48 89 75 d0 48 c7 c6 e0 41 30 c2 <48> 8b 38 48 8b 9f 68 06 00 00 e8 8d d7 fd ff 31 c0 48 81 c3 e0 02 RSP: 0018:ffffd0f3c2bd7608 EFLAGS: 00010292 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffd0f3c2bd7668 RDX: ffffd0f3c2bd7664 RSI: ffffffffc23041e0 RDI: ffff8b32494b8000 RBP: ffffd0f3c2bd7648 R08: ffffd0f3c2bd766c R09: ffffd0f3c2bd7760 R10: ffffd0f3c2bd7820 R11: 0000000000000000 R12: ffff8b32494b8000 R13: ffffd0f3c2bd7664 R14: ffffd0f3c2bd7668 R15: ffffd0f3c2bd766c FS: 000071f631b68700(0000) GS:ffff8b399f114000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000001b8105000 CR4: 0000000000f50ef0 PKRU: 55555554 Call Trace: <TASK> dm_crtc_get_scanoutpos+0xd7/0x180 [amdgpu] amdgpu_display_get_crtc_scanoutpos+0x86/0x1c0 [amdgpu] ? __pfx_amdgpu_crtc_get_scanout_position+0x10/0x10[amdgpu] amdgpu_crtc_get_scanout_position+0x27/0x50 [amdgpu] drm_crtc_vblank_helper_get_vblank_timestamp_internal+0xf7/0x400 drm_crtc_vblank_helper_get_vblank_timestamp+0x1c/0x30 drm_crtc_get_last_vbltimestamp+0x55/0x90 drm_crtc_next_vblank_start+0x45/0xa0 drm_atomic_helper_wait_for_fences+0x81/0x1f0 ... (cherry picked from commit 621e55f1919640acab25383362b96e65f2baea3c)
medium
CVE-2025-68285In the Linux kernel, the following vulnerability has been resolved: libceph: fix potential use-after-free in have_mon_and_osd_map() The wait loop in __ceph_open_session() can race with the client receiving a new monmap or osdmap shortly after the initial map is received. Both ceph_monc_handle_map() and handle_one_map() install a new map immediately after freeing the old one kfree(monc->monmap); monc->monmap = monmap; ceph_osdmap_destroy(osdc->osdmap); osdc->osdmap = newmap; under client->monc.mutex and client->osdc.lock respectively, but because neither is taken in have_mon_and_osd_map() it's possible for client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in client->monc.monmap && client->monc.monmap->epoch && client->osdc.osdmap && client->osdc.osdmap->epoch; condition to dereference an already freed map. This happens to be reproducible with generic/395 and generic/397 with KASAN enabled: BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70 Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305 CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266 ... Call Trace: <TASK> have_mon_and_osd_map+0x56/0x70 ceph_open_session+0x182/0x290 ceph_get_tree+0x333/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Allocated by task 13305: ceph_osdmap_alloc+0x16/0x130 ceph_osdc_init+0x27a/0x4c0 ceph_create_client+0x153/0x190 create_fs_client+0x50/0x2a0 ceph_get_tree+0xff/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 9475: kfree+0x212/0x290 handle_one_map+0x23c/0x3b0 ceph_osdc_handle_map+0x3c9/0x590 mon_dispatch+0x655/0x6f0 ceph_con_process_message+0xc3/0xe0 ceph_con_v1_try_read+0x614/0x760 ceph_con_workfn+0x2de/0x650 process_one_work+0x486/0x7c0 process_scheduled_works+0x73/0x90 worker_thread+0x1c8/0x2a0 kthread+0x2ec/0x300 ret_from_fork+0x24/0x40 ret_from_fork_asm+0x1a/0x30 Rewrite the wait loop to check the above condition directly with client->monc.mutex and client->osdc.lock taken as appropriate. While at it, improve the timeout handling (previously mount_timeout could be exceeded in case wait_event_interruptible_timeout() slept more than once) and access client->auth_err under client->monc.mutex to match how it's set in finish_auth(). monmap_show() and osdmap_show() now take the respective lock before accessing the map as well.
medium
CVE-2025-68284In the Linux kernel, the following vulnerability has been resolved: libceph: prevent potential out-of-bounds writes in handle_auth_session_key() The len field originates from untrusted network packets. Boundary checks have been added to prevent potential out-of-bounds writes when decrypting the connection secret or processing service tickets. [ idryomov: changelog ]
medium
CVE-2025-68283In the Linux kernel, the following vulnerability has been resolved: libceph: replace BUG_ON with bounds check for map->max_osd OSD indexes come from untrusted network packets. Boundary checks are added to validate these against map->max_osd. [ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic edits ]
high
CVE-2025-68282In the Linux kernel, the following vulnerability has been resolved: usb: gadget: udc: fix use-after-free in usb_gadget_state_work A race condition during gadget teardown can lead to a use-after-free in usb_gadget_state_work(), as reported by KASAN: BUG: KASAN: invalid-access in sysfs_notify+0x2c/0xd0 Workqueue: events usb_gadget_state_work The fundamental race occurs because a concurrent event (e.g., an interrupt) can call usb_gadget_set_state() and schedule gadget->work at any time during the cleanup process in usb_del_gadget(). Commit 399a45e5237c ("usb: gadget: core: flush gadget workqueue after device removal") attempted to fix this by moving flush_work() to after device_del(). However, this does not fully solve the race, as a new work item can still be scheduled *after* flush_work() completes but before the gadget's memory is freed, leading to the same use-after-free. This patch fixes the race condition robustly by introducing a 'teardown' flag and a 'state_lock' spinlock to the usb_gadget struct. The flag is set during cleanup in usb_del_gadget() *before* calling flush_work() to prevent any new work from being scheduled once cleanup has commenced. The scheduling site, usb_gadget_set_state(), now checks this flag under the lock before queueing the work, thus safely closing the race window.
medium
CVE-2025-68269In JetBrains IntelliJ IDEA before 2025.3 missing confirmation allowed opening of untrusted remote projects over SSH
medium
CVE-2025-68268In JetBrains TeamCity before 2025.11.1 reflected XSS was possible on the storage settings page
medium
CVE-2025-68267In JetBrains TeamCity before 2025.11.1 excessive privileges were possible due to storing GitHub personal access token instead of an installation token
medium
CVE-2025-68166In JetBrains TeamCity before 2025.11 a DOM-based XSS was possible on the OAuth connections tab
medium
CVE-2025-68165In JetBrains TeamCity before 2025.11 reflected XSS was possible on VCS Root setup
medium
CVE-2025-68164In JetBrains TeamCity before 2025.11 port enumeration was possible via the Perforce connection test
low
CVE-2025-68163In JetBrains TeamCity before 2025.11 stored XSS was possible on agentpushInstall page
medium
CVE-2025-68162In JetBrains TeamCity before 2025.11 maven embedder allowed loading extensions via project configuration
low
CVE-2025-65427An issue was discovered in Dbit N300 T1 Pro Easy Setup Wireless Wi-Fi Router on firmware version V1.0.0 does not implement rate limiting to /api/login allowing attackers to brute force password enumerations.
medium
CVE-2025-65319When using the attachment interaction functionality, Blue Mail 1.140.103 and below saves documents to a file system without a Mark-of-the-Web tag, which allows attackers to bypass the built-in file protection mechanisms of both Windows OS and third-party software.
critical
CVE-2025-65318When using the attachment interaction functionality, Canary Mail 5.1.40 and below saves documents to a file system without a Mark-of-the-Web tag, which allows attackers to bypass the built-in file protection mechanisms of both Windows OS and third-party software.
critical
CVE-2025-64012InvoicePlane commit debb446c is vulnerable to Incorrect Access Control. The invoices/view handler fails to verify ownership before returning invoice data.
medium
CVE-2025-62329HCL DevOps Deploy / HCL Launch is susceptible to a race condition in http-session client-IP binding enforcement which may allow a session to be briefly reused from a new IP address before it is invalidated. This could lead to unauthorized access under certain network conditions.
medium
CVE-2025-14432In limited scenarios, sensitive data might be written to the log file if an admin uses Microsoft Teams Admin Center (TAC) to make device configuration changes. The affected log file is visible only to users with admin credentials. This is limited to Microsoft TAC and does not affect configuration changes made using the provisioning server or the device WebUI.
high
CVE-2025-10450Exposure of Private Personal Information to an Unauthorized Actor vulnerability in RTI Connext Professional (Core Libraries) allows Sniffing Network Traffic.This issue affects Connext Professional: from 7.4.0 before 7.*, from 7.2.0 before 7.3.1.
high
CVE-2025-68281In the Linux kernel, the following vulnerability has been resolved: ASoC: SDCA: bug fix while parsing mipi-sdca-control-cn-list "struct sdca_control" declares "values" field as integer array. But the memory allocated to it is of char array. This causes crash for sdca_parse_function API. This patch addresses the issue by allocating correct data size.
medium
CVE-2025-68266In the Linux kernel, the following vulnerability has been resolved: bfs: Reconstruct file type when loading from disk syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted or when the 32bits "attributes" field loaded from disk are corrupted. A documentation says that BFS uses only lower 9 bits of the "mode" field. But I can't find an explicit explanation that the unused upper 23 bits (especially, the S_IFMT bits) are initialized with 0. Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk. Also, verify that the value of the "attributes" field loaded from disk is either BFS_VREG or BFS_VDIR (because BFS supports only regular files and the root directory).
high
CVE-2025-68265In the Linux kernel, the following vulnerability has been resolved: nvme: fix admin request_queue lifetime The namespaces can access the controller's admin request_queue, and stale references on the namespaces may exist after tearing down the controller. Ensure the admin request_queue is active by moving the controller's 'put' to after all controller references have been released to ensure no one is can access the request_queue. This fixes a reported use-after-free bug: BUG: KASAN: slab-use-after-free in blk_queue_enter+0x41c/0x4a0 Read of size 8 at addr ffff88c0a53819f8 by task nvme/3287 CPU: 67 UID: 0 PID: 3287 Comm: nvme Tainted: G E 6.13.2-ga1582f1a031e #15 Tainted: [E]=UNSIGNED_MODULE Hardware name: Jabil /EGS 2S MB1, BIOS 1.00 06/18/2025 Call Trace: <TASK> dump_stack_lvl+0x4f/0x60 print_report+0xc4/0x620 ? _raw_spin_lock_irqsave+0x70/0xb0 ? _raw_read_unlock_irqrestore+0x30/0x30 ? blk_queue_enter+0x41c/0x4a0 kasan_report+0xab/0xe0 ? blk_queue_enter+0x41c/0x4a0 blk_queue_enter+0x41c/0x4a0 ? __irq_work_queue_local+0x75/0x1d0 ? blk_queue_start_drain+0x70/0x70 ? irq_work_queue+0x18/0x20 ? vprintk_emit.part.0+0x1cc/0x350 ? wake_up_klogd_work_func+0x60/0x60 blk_mq_alloc_request+0x2b7/0x6b0 ? __blk_mq_alloc_requests+0x1060/0x1060 ? __switch_to+0x5b7/0x1060 nvme_submit_user_cmd+0xa9/0x330 nvme_user_cmd.isra.0+0x240/0x3f0 ? force_sigsegv+0xe0/0xe0 ? nvme_user_cmd64+0x400/0x400 ? vfs_fileattr_set+0x9b0/0x9b0 ? cgroup_update_frozen_flag+0x24/0x1c0 ? cgroup_leave_frozen+0x204/0x330 ? nvme_ioctl+0x7c/0x2c0 blkdev_ioctl+0x1a8/0x4d0 ? blkdev_common_ioctl+0x1930/0x1930 ? fdget+0x54/0x380 __x64_sys_ioctl+0x129/0x190 do_syscall_64+0x5b/0x160 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f765f703b0b Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d dd 52 0f 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe2cefe808 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007ffe2cefe860 RCX: 00007f765f703b0b RDX: 00007ffe2cefe860 RSI: 00000000c0484e41 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000003 R09: 0000000000000000 R10: 00007f765f611d50 R11: 0000000000000202 R12: 0000000000000003 R13: 00000000c0484e41 R14: 0000000000000001 R15: 00007ffe2cefea60 </TASK>
high
CVE-2025-68264In the Linux kernel, the following vulnerability has been resolved: ext4: refresh inline data size before write operations The cached ei->i_inline_size can become stale between the initial size check and when ext4_update_inline_data()/ext4_create_inline_data() use it. Although ext4_get_max_inline_size() reads the correct value at the time of the check, concurrent xattr operations can modify i_inline_size before ext4_write_lock_xattr() is acquired. This causes ext4_update_inline_data() and ext4_create_inline_data() to work with stale capacity values, leading to a BUG_ON() crash in ext4_write_inline_data(): kernel BUG at fs/ext4/inline.c:1331! BUG_ON(pos + len > EXT4_I(inode)->i_inline_size); The race window: 1. ext4_get_max_inline_size() reads i_inline_size = 60 (correct) 2. Size check passes for 50-byte write 3. [Another thread adds xattr, i_inline_size changes to 40] 4. ext4_write_lock_xattr() acquires lock 5. ext4_update_inline_data() uses stale i_inline_size = 60 6. Attempts to write 50 bytes but only 40 bytes actually available 7. BUG_ON() triggers Fix this by recalculating i_inline_size via ext4_find_inline_data_nolock() immediately after acquiring xattr_sem. This ensures ext4_update_inline_data() and ext4_create_inline_data() work with current values that are protected from concurrent modifications. This is similar to commit a54c4613dac1 ("ext4: fix race writing to an inline_data file while its xattrs are changing") which fixed i_inline_off staleness. This patch addresses the related i_inline_size staleness issue.
high
CVE-2025-68263In the Linux kernel, the following vulnerability has been resolved: ksmbd: ipc: fix use-after-free in ipc_msg_send_request ipc_msg_send_request() waits for a generic netlink reply using an ipc_msg_table_entry on the stack. The generic netlink handler (handle_generic_event()/handle_response()) fills entry->response under ipc_msg_table_lock, but ipc_msg_send_request() used to validate and free entry->response without holding the same lock. Under high concurrency this allows a race where handle_response() is copying data into entry->response while ipc_msg_send_request() has just freed it, leading to a slab-use-after-free reported by KASAN in handle_generic_event(): BUG: KASAN: slab-use-after-free in handle_generic_event+0x3c4/0x5f0 [ksmbd] Write of size 12 at addr ffff888198ee6e20 by task pool/109349 ... Freed by task: kvfree ipc_msg_send_request [ksmbd] ksmbd_rpc_open -> ksmbd_session_rpc_open [ksmbd] Fix by: - Taking ipc_msg_table_lock in ipc_msg_send_request() while validating entry->response, freeing it when invalid, and removing the entry from ipc_msg_table. - Returning the final entry->response pointer to the caller only after the hash entry is removed under the lock. - Returning NULL in the error path, preserving the original API semantics. This makes all accesses to entry->response consistent with handle_response(), which already updates and fills the response buffer under ipc_msg_table_lock, and closes the race that allowed the UAF.
medium
CVE-2025-68262In the Linux kernel, the following vulnerability has been resolved: crypto: zstd - fix double-free in per-CPU stream cleanup The crypto/zstd module has a double-free bug that occurs when multiple tfms are allocated and freed. The issue happens because zstd_streams (per-CPU contexts) are freed in zstd_exit() during every tfm destruction, rather than being managed at the module level. When multiple tfms exist, each tfm exit attempts to free the same shared per-CPU streams, resulting in a double-free. This leads to a stack trace similar to: BUG: Bad page state in process kworker/u16:1 pfn:106fd93 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x106fd93 flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0017ffffc0000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: nonzero entire_mapcount Modules linked in: ... CPU: 3 UID: 0 PID: 2506 Comm: kworker/u16:1 Kdump: loaded Tainted: G B Hardware name: ... Workqueue: btrfs-delalloc btrfs_work_helper Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 bad_page+0x71/0xd0 free_unref_page_prepare+0x24e/0x490 free_unref_page+0x60/0x170 crypto_acomp_free_streams+0x5d/0xc0 crypto_acomp_exit_tfm+0x23/0x50 crypto_destroy_tfm+0x60/0xc0 ... Change the lifecycle management of zstd_streams to free the streams only once during module cleanup.
high
CVE-2025-68261In the Linux kernel, the following vulnerability has been resolved: ext4: add i_data_sem protection in ext4_destroy_inline_data_nolock() Fix a race between inline data destruction and block mapping. The function ext4_destroy_inline_data_nolock() changes the inode data layout by clearing EXT4_INODE_INLINE_DATA and setting EXT4_INODE_EXTENTS. At the same time, another thread may execute ext4_map_blocks(), which tests EXT4_INODE_EXTENTS to decide whether to call ext4_ext_map_blocks() or ext4_ind_map_blocks(). Without i_data_sem protection, ext4_ind_map_blocks() may receive inode with EXT4_INODE_EXTENTS flag and triggering assert. kernel BUG at fs/ext4/indirect.c:546! EXT4-fs (loop2): unmounting filesystem. invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:ext4_ind_map_blocks.cold+0x2b/0x5a fs/ext4/indirect.c:546 Call Trace: <TASK> ext4_map_blocks+0xb9b/0x16f0 fs/ext4/inode.c:681 _ext4_get_block+0x242/0x590 fs/ext4/inode.c:822 ext4_block_write_begin+0x48b/0x12c0 fs/ext4/inode.c:1124 ext4_write_begin+0x598/0xef0 fs/ext4/inode.c:1255 ext4_da_write_begin+0x21e/0x9c0 fs/ext4/inode.c:3000 generic_perform_write+0x259/0x5d0 mm/filemap.c:3846 ext4_buffered_write_iter+0x15b/0x470 fs/ext4/file.c:285 ext4_file_write_iter+0x8e0/0x17f0 fs/ext4/file.c:679 call_write_iter include/linux/fs.h:2271 [inline] do_iter_readv_writev+0x212/0x3c0 fs/read_write.c:735 do_iter_write+0x186/0x710 fs/read_write.c:861 vfs_iter_write+0x70/0xa0 fs/read_write.c:902 iter_file_splice_write+0x73b/0xc90 fs/splice.c:685 do_splice_from fs/splice.c:763 [inline] direct_splice_actor+0x10f/0x170 fs/splice.c:950 splice_direct_to_actor+0x33a/0xa10 fs/splice.c:896 do_splice_direct+0x1a9/0x280 fs/splice.c:1002 do_sendfile+0xb13/0x12c0 fs/read_write.c:1255 __do_sys_sendfile64 fs/read_write.c:1323 [inline] __se_sys_sendfile64 fs/read_write.c:1309 [inline] __x64_sys_sendfile64+0x1cf/0x210 fs/read_write.c:1309 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x6e/0xd8
high
CVE-2025-68260In the Linux kernel, the following vulnerability has been resolved: rust_binder: fix race condition on death_list Rust Binder contains the following unsafe operation: // SAFETY: A `NodeDeath` is never inserted into the death list // of any node other than its owner, so it is either in this // death list or in no death list. unsafe { node_inner.death_list.remove(self) }; This operation is unsafe because when touching the prev/next pointers of a list element, we have to ensure that no other thread is also touching them in parallel. If the node is present in the list that `remove` is called on, then that is fine because we have exclusive access to that list. If the node is not in any list, then it's also ok. But if it's present in a different list that may be accessed in parallel, then that may be a data race on the prev/next pointers. And unfortunately that is exactly what is happening here. In Node::release, we: 1. Take the lock. 2. Move all items to a local list on the stack. 3. Drop the lock. 4. Iterate the local list on the stack. Combined with threads using the unsafe remove method on the original list, this leads to memory corruption of the prev/next pointers. This leads to crashes like this one: Unable to handle kernel paging request at virtual address 000bb9841bcac70e Mem abort info: ESR = 0x0000000096000044 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000044, ISS2 = 0x00000000 CM = 0, WnR = 1, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [000bb9841bcac70e] address between user and kernel address ranges Internal error: Oops: 0000000096000044 [#1] PREEMPT SMP google-cdd 538c004.gcdd: context saved(CPU:1) item - log_kevents is disabled Modules linked in: ... rust_binder CPU: 1 UID: 0 PID: 2092 Comm: kworker/1:178 Tainted: G S W OE 6.12.52-android16-5-g98debd5df505-4k #1 f94a6367396c5488d635708e43ee0c888d230b0b Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: MUSTANG PVT 1.0 based on LGA (DT) Workqueue: events _RNvXs6_NtCsdfZWD8DztAw_6kernel9workqueueINtNtNtB7_4sync3arc3ArcNtNtCs8QPsHWIn21X_16rust_binder_main7process7ProcessEINtB5_15WorkItemPointerKy0_E3runB13_ [rust_binder] pstate: 23400005 (nzCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder] lr : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x464/0x11f8 [rust_binder] sp : ffffffc09b433ac0 x29: ffffffc09b433d30 x28: ffffff8821690000 x27: ffffffd40cbaa448 x26: ffffff8821690000 x25: 00000000ffffffff x24: ffffff88d0376578 x23: 0000000000000001 x22: ffffffc09b433c78 x21: ffffff88e8f9bf40 x20: ffffff88e8f9bf40 x19: ffffff882692b000 x18: ffffffd40f10bf00 x17: 00000000c006287d x16: 00000000c006287d x15: 00000000000003b0 x14: 0000000000000100 x13: 000000201cb79ae0 x12: fffffffffffffff0 x11: 0000000000000000 x10: 0000000000000001 x9 : 0000000000000000 x8 : b80bb9841bcac706 x7 : 0000000000000001 x6 : fffffffebee63f30 x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000 x2 : 0000000000004c31 x1 : ffffff88216900c0 x0 : ffffff88e8f9bf00 Call trace: _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder bbc172b53665bbc815363b22e97e3f7e3fe971fc] process_scheduled_works+0x1c4/0x45c worker_thread+0x32c/0x3e8 kthread+0x11c/0x1c8 ret_from_fork+0x10/0x20 Code: 94218d85 b4000155 a94026a8 d10102a0 (f9000509) ---[ end trace 0000000000000000 ]--- Thus, modify Node::release to pop items directly off the original list.
high
CVE-2025-68259In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Don't skip unrelated instruction if INT3/INTO is replaced When re-injecting a soft interrupt from an INT3, INT0, or (select) INTn instruction, discard the exception and retry the instruction if the code stream is changed (e.g. by a different vCPU) between when the CPU executes the instruction and when KVM decodes the instruction to get the next RIP. As effectively predicted by commit 6ef88d6e36c2 ("KVM: SVM: Re-inject INT3/INTO instead of retrying the instruction"), failure to verify that the correct INTn instruction was decoded can effectively clobber guest state due to decoding the wrong instruction and thus specifying the wrong next RIP. The bug most often manifests as "Oops: int3" panics on static branch checks in Linux guests. Enabling or disabling a static branch in Linux uses the kernel's "text poke" code patching mechanism. To modify code while other CPUs may be executing that code, Linux (temporarily) replaces the first byte of the original instruction with an int3 (opcode 0xcc), then patches in the new code stream except for the first byte, and finally replaces the int3 with the first byte of the new code stream. If a CPU hits the int3, i.e. executes the code while it's being modified, then the guest kernel must look up the RIP to determine how to handle the #BP, e.g. by emulating the new instruction. If the RIP is incorrect, then this lookup fails and the guest kernel panics. The bug reproduces almost instantly by hacking the guest kernel to repeatedly check a static branch[1] while running a drgn script[2] on the host to constantly swap out the memory containing the guest's TSS. [1]: https://gist.github.com/osandov/44d17c51c28c0ac998ea0334edf90b5a [2]: https://gist.github.com/osandov/10e45e45afa29b11e0c7209247afc00b
high
CVE-2025-68258In the Linux kernel, the following vulnerability has been resolved: comedi: multiq3: sanitize config options in multiq3_attach() Syzbot identified an issue [1] in multiq3_attach() that induces a task timeout due to open() or COMEDI_DEVCONFIG ioctl operations, specifically, in the case of multiq3 driver. This problem arose when syzkaller managed to craft weird configuration options used to specify the number of channels in encoder subdevice. If a particularly great number is passed to s->n_chan in multiq3_attach() via it->options[2], then multiple calls to multiq3_encoder_reset() at the end of driver-specific attach() method will be running for minutes, thus blocking tasks and affected devices as well. While this issue is most likely not too dangerous for real-life devices, it still makes sense to sanitize configuration inputs. Enable a sensible limit on the number of encoder chips (4 chips max, each with 2 channels) to stop this behaviour from manifesting. [1] Syzbot crash: INFO: task syz.2.19:6067 blocked for more than 143 seconds. ... Call Trace: <TASK> context_switch kernel/sched/core.c:5254 [inline] __schedule+0x17c4/0x4d60 kernel/sched/core.c:6862 __schedule_loop kernel/sched/core.c:6944 [inline] schedule+0x165/0x360 kernel/sched/core.c:6959 schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7016 __mutex_lock_common kernel/locking/mutex.c:676 [inline] __mutex_lock+0x7e6/0x1350 kernel/locking/mutex.c:760 comedi_open+0xc0/0x590 drivers/comedi/comedi_fops.c:2868 chrdev_open+0x4cc/0x5e0 fs/char_dev.c:414 do_dentry_open+0x953/0x13f0 fs/open.c:965 vfs_open+0x3b/0x340 fs/open.c:1097 ...
medium
CVE-2025-68257In the Linux kernel, the following vulnerability has been resolved: comedi: check device's attached status in compat ioctls Syzbot identified an issue [1] that crashes kernel, seemingly due to unexistent callback dev->get_valid_routes(). By all means, this should not occur as said callback must always be set to get_zero_valid_routes() in __comedi_device_postconfig(). As the crash seems to appear exclusively in i386 kernels, at least, judging from [1] reports, the blame lies with compat versions of standard IOCTL handlers. Several of them are modified and do not use comedi_unlocked_ioctl(). While functionality of these ioctls essentially copy their original versions, they do not have required sanity check for device's attached status. This, in turn, leads to a possibility of calling select IOCTLs on a device that has not been properly setup, even via COMEDI_DEVCONFIG. Doing so on unconfigured devices means that several crucial steps are missed, for instance, specifying dev->get_valid_routes() callback. Fix this somewhat crudely by ensuring device's attached status before performing any ioctls, improving logic consistency between modern and compat functions. [1] Syzbot report: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... CR2: ffffffffffffffd6 CR3: 000000006c717000 CR4: 0000000000352ef0 Call Trace: <TASK> get_valid_routes drivers/comedi/comedi_fops.c:1322 [inline] parse_insn+0x78c/0x1970 drivers/comedi/comedi_fops.c:1401 do_insnlist_ioctl+0x272/0x700 drivers/comedi/comedi_fops.c:1594 compat_insnlist drivers/comedi/comedi_fops.c:3208 [inline] comedi_compat_ioctl+0x810/0x990 drivers/comedi/comedi_fops.c:3273 __do_compat_sys_ioctl fs/ioctl.c:695 [inline] __se_compat_sys_ioctl fs/ioctl.c:638 [inline] __ia32_compat_sys_ioctl+0x242/0x370 fs/ioctl.c:638 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] ...
medium
CVE-2025-68256In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in rtw_get_ie() parser The Information Element (IE) parser rtw_get_ie() trusted the length byte of each IE without validating that the IE body (len bytes after the 2-byte header) fits inside the remaining frame buffer. A malformed frame can advertise an IE length larger than the available data, causing the parser to increment its pointer beyond the buffer end. This results in out-of-bounds reads or, depending on the pattern, an infinite loop. Fix by validating that (offset + 2 + len) does not exceed the limit before accepting the IE or advancing to the next element. This prevents OOB reads and ensures the parser terminates safely on malformed frames.
high
CVE-2025-68255In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix stack buffer overflow in OnAssocReq IE parsing The Supported Rates IE length from an incoming Association Request frame was used directly as the memcpy() length when copying into a fixed-size 16-byte stack buffer (supportRate). A malicious station can advertise an IE length larger than 16 bytes, causing a stack buffer overflow. Clamp ie_len to the buffer size before copying the Supported Rates IE, and correct the bounds check when merging Extended Supported Rates to prevent a second potential overflow. This prevents kernel stack corruption triggered by malformed association requests.
high
CVE-2025-68254In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in OnBeacon ESR IE parsing The Extended Supported Rates (ESR) IE handling in OnBeacon accessed *(p + 1 + ielen) and *(p + 2 + ielen) without verifying that these offsets lie within the received frame buffer. A malformed beacon with an ESR IE positioned at the end of the buffer could cause an out-of-bounds read, potentially triggering a kernel panic. Add a boundary check to ensure that the ESR IE body and the subsequent bytes are within the limits of the frame before attempting to access them. This prevents OOB reads caused by malformed beacon frames.
high
CVE-2025-68253In the Linux kernel, the following vulnerability has been resolved: mm: don't spin in add_stack_record when gfp flags don't allow syzbot was able to find the following path: add_stack_record_to_list mm/page_owner.c:182 [inline] inc_stack_record_count mm/page_owner.c:214 [inline] __set_page_owner+0x2c3/0x4a0 mm/page_owner.c:333 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x240/0x2a0 mm/page_alloc.c:1851 prep_new_page mm/page_alloc.c:1859 [inline] get_page_from_freelist+0x21e4/0x22c0 mm/page_alloc.c:3858 alloc_pages_nolock_noprof+0x94/0x120 mm/page_alloc.c:7554 Don't spin in add_stack_record_to_list() when it is called from *_nolock() context.
medium
CVE-2025-68252In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: Fix dma_buf object leak in fastrpc_map_lookup In fastrpc_map_lookup, dma_buf_get is called to obtain a reference to the dma_buf for comparison purposes. However, this reference is never released when the function returns, leading to a dma_buf memory leak. Fix this by adding dma_buf_put before returning from the function, ensuring that the temporarily acquired reference is properly released regardless of whether a matching map is found. Rule: add
medium