Ubuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1187-1)

Ubuntu Security Notice (C) 2011-2016 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.


Synopsis :

The remote Ubuntu host is missing one or more security-related
patches.

Description :

It was discovered that KVM did not correctly initialize certain CPU
registers. A local attacker could exploit this to crash the system,
leading to a denial of service. (CVE-2010-3698)

Thomas Pollet discovered that the RDS network protocol did not check
certain iovec buffers. A local attacker could exploit this to crash
the system or possibly execute arbitrary code as the root user.
(CVE-2010-3865)

Vasiliy Kulikov discovered that the Linux kernel X.25 implementation
did not correctly clear kernel memory. A local attacker could exploit
this to read kernel stack memory, leading to a loss of privacy.
(CVE-2010-3875)

Vasiliy Kulikov discovered that the Linux kernel sockets
implementation did not properly initialize certain structures. A local
attacker could exploit this to read kernel stack memory, leading to a
loss of privacy. (CVE-2010-3876)

Vasiliy Kulikov discovered that the TIPC interface did not correctly
initialize certain structures. A local attacker could exploit this to
read kernel stack memory, leading to a loss of privacy.
(CVE-2010-3877)

Nelson Elhage discovered that the Linux kernel IPv4 implementation did
not properly audit certain bytecodes in netlink messages. A local
attacker could exploit this to cause the kernel to hang, leading to a
denial of service. (CVE-2010-3880)

Vasiliy Kulikov discovered that kvm did not correctly clear memory. A
local attacker could exploit this to read portions of the kernel
stack, leading to a loss of privacy. (CVE-2010-3881)

Dan Rosenberg discovered that multiple terminal ioctls did not
correctly initialize structure memory. A local attacker could exploit
this to read portions of kernel stack memory, leading to a loss of
privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077)

Dan Rosenberg discovered that the ivtv V4L driver did not correctly
initialize certian structures. A local attacker could exploit this to
read kernel stack memory, leading to a loss of privacy.
(CVE-2010-4079)

Dan Rosenberg discovered that the semctl syscall did not correctly
clear kernel memory. A local attacker could exploit this to read
kernel stack memory, leading to a loss of privacy. (CVE-2010-4083)

Dan Rosenberg discovered that the SCSI subsystem did not correctly
validate iov segments. A local attacker with access to a SCSI device
could send specially crafted requests to crash the system, leading to
a denial of service. (CVE-2010-4163, CVE-2010-4668)

It was discovered that multithreaded exec did not handle CPU timers
correctly. A local attacker could exploit this to crash the system,
leading to a denial of service. (CVE-2010-4248)

Nelson Elhage discovered that Econet did not correctly handle AUN
packets over UDP. A local attacker could send specially crafted
traffic to crash the system, leading to a denial of service.
(CVE-2010-4342)

Tavis Ormandy discovered that the install_special_mapping function
could bypass the mmap_min_addr restriction. A local attacker could
exploit this to mmap 4096 bytes below the mmap_min_addr area, possibly
improving the chances of performing NULL pointer dereference attacks.
(CVE-2010-4346)

Dan Rosenberg discovered that the OSS subsystem did not handle name
termination correctly. A local attacker could exploit this crash the
system or gain root privileges. (CVE-2010-4527)

Dan Rosenberg discovered that IRDA did not correctly check the size of
buffers. On non-x86 systems, a local attacker could exploit this to
read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529)

Dan Rosenburg discovered that the CAN subsystem leaked kernel
addresses into the /proc filesystem. A local attacker could use this
to increase the chances of a successful memory corruption exploit.
(CVE-2010-4565)

Dan Carpenter discovered that the Infiniband driver did not correctly
handle certain requests. A local user could exploit this to crash the
system or potentially gain root privileges. (CVE-2010-4649,
CVE-2011-1044)

Kees Cook discovered that the IOWarrior USB device driver did not
correctly check certain size fields. A local attacker with physical
access could plug in a specially crafted USB device to crash the
system or potentially gain root privileges. (CVE-2010-4656)

Goldwyn Rodrigues discovered that the OCFS2 filesystem did not
correctly clear memory when writing certain file holes. A local
attacker could exploit this to read uninitialized data from the disk,
leading to a loss of privacy. (CVE-2011-0463)

Dan Carpenter discovered that the TTPCI DVB driver did not check
certain values during an ioctl. If the dvb-ttpci module was loaded, a
local attacker could exploit this to crash the system, leading to a
denial of service, or possibly gain root privileges. (CVE-2011-0521)

Jens Kuehnel discovered that the InfiniBand driver contained a race
condition. On systems using InfiniBand, a local attacker could send
specially crafted requests to crash the system, leading to a denial of
service. (CVE-2011-0695)

Dan Rosenberg discovered that XFS did not correctly initialize memory.
A local attacker could make crafted ioctl calls to leak portions of
kernel stack memory, leading to a loss of privacy. (CVE-2011-0711)

Rafael Dominguez Vega discovered that the caiaq Native Instruments USB
driver did not correctly validate string lengths. A local attacker
with physical access could plug in a specially crafted USB device to
crash the system or potentially gain root privileges. (CVE-2011-0712)

Kees Cook reported that /proc/pid/stat did not correctly filter
certain memory locations. A local attacker could determine the memory
layout of processes in an attempt to increase the chances of a
successful memory corruption exploit. (CVE-2011-0726)

Timo Warns discovered that MAC partition parsing routines did not
correctly calculate block counts. A local attacker with physical
access could plug in a specially crafted block device to crash the
system or potentially gain root privileges. (CVE-2011-1010)

Timo Warns discovered that LDM partition parsing routines did not
correctly calculate block counts. A local attacker with physical
access could plug in a specially crafted block device to crash the
system, leading to a denial of service. (CVE-2011-1012)

Matthiew Herrb discovered that the drm modeset interface did not
correctly handle a signed comparison. A local attacker could exploit
this to crash the system or possibly gain root privileges.
(CVE-2011-1013)

Marek Olsak discovered that the Radeon GPU drivers did not correctly
validate certain registers. On systems with specific hardware, a local
attacker could exploit this to write to arbitrary video memory.
(CVE-2011-1016)

Timo Warns discovered that the LDM disk partition handling code did
not correctly handle certain values. By inserting a specially crafted
disk device, a local attacker could exploit this to gain root
privileges. (CVE-2011-1017)

Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not
needed to load kernel modules. A local attacker with the CAP_NET_ADMIN
capability could load existing kernel modules, possibly increasing the
attack surface available on the system. (CVE-2011-1019)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
clear memory. A local attacker could exploit this to read kernel stack
memory, leading to a loss of privacy. (CVE-2011-1078)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
check that device name strings were NULL terminated. A local attacker
could exploit this to crash the system, leading to a denial of
service, or leak contents of kernel stack memory, leading to a loss of
privacy. (CVE-2011-1079)

Vasiliy Kulikov discovered that bridge network filtering did not check
that name fields were NULL terminated. A local attacker could exploit
this to leak contents of kernel stack memory, leading to a loss of
privacy. (CVE-2011-1080)

Nelson Elhage discovered that the epoll subsystem did not correctly
handle certain structures. A local attacker could create malicious
requests that would hang the system, leading to a denial of service.
(CVE-2011-1082)

Neil Horman discovered that NFSv4 did not correctly handle certain
orders of operation with ACL data. A remote attacker with access to an
NFSv4 mount could exploit this to crash the system, leading to a
denial of service. (CVE-2011-1090)

Johan Hovold discovered that the DCCP network stack did not correctly
handle certain packet combinations. A remote attacker could send
specially crafted network traffic that would crash the system, leading
to a denial of service. (CVE-2011-1093)

Peter Huewe discovered that the TPM device did not correctly
initialize memory. A local attacker could exploit this to read kernel
heap memory contents, leading to a loss of privacy. (CVE-2011-1160)

Timo Warns discovered that OSF partition parsing routines did not
correctly clear memory. A local attacker with physical access could
plug in a specially crafted block device to read kernel memory,
leading to a loss of privacy. (CVE-2011-1163)

Dan Rosenberg discovered that some ALSA drivers did not correctly
check the adapter index during ioctl calls. If this driver was loaded,
a local attacker could make a specially crafted ioctl call to gain
root privileges. (CVE-2011-1169)

Vasiliy Kulikov discovered that the netfilter code did not check
certain strings copied from userspace. A local attacker with netfilter
access could exploit this to read kernel memory or crash the system,
leading to a denial of service. (CVE-2011-1170, CVE-2011-1171,
CVE-2011-1172, CVE-2011-2534)

Vasiliy Kulikov discovered that the Acorn Universal Networking driver
did not correctly initialize memory. A remote attacker could send
specially crafted traffic to read kernel stack memory, leading to a
loss of privacy. (CVE-2011-1173)

Dan Rosenberg discovered that the IRDA subsystem did not correctly
check certain field sizes. If a system was using IRDA, a remote
attacker could send specially crafted traffic to crash the system or
gain root privileges. (CVE-2011-1180)

Julien Tinnes discovered that the kernel did not correctly validate
the signal structure from tkill(). A local attacker could exploit this
to send signals to arbitrary threads, possibly bypassing expected
restrictions. (CVE-2011-1182)

Ryan Sweat discovered that the GRO code did not correctly validate
memory. In some configurations on systems using VLANs, a remote
attacker could send specially crafted traffic to crash the system,
leading to a denial of service. (CVE-2011-1478)

Dan Rosenberg discovered that MPT devices did not correctly validate
certain values in ioctl calls. If these drivers were loaded, a local
attacker could exploit this to read arbitrary kernel memory, leading
to a loss of privacy. (CVE-2011-1494, CVE-2011-1495)

Timo Warns discovered that the GUID partition parsing routines did not
correctly validate certain structures. A local attacker with physical
access could plug in a specially crafted block device to crash the
system, leading to a denial of service. (CVE-2011-1577)

Tavis Ormandy discovered that the pidmap function did not correctly
handle large requests. A local attacker could exploit this to crash
the system, leading to a denial of service. (CVE-2011-1593)

Oliver Hartkopp and Dave Jones discovered that the CAN network driver
did not correctly validate certain socket structures. If this driver
was loaded, a local attacker could crash the system, leading to a
denial of service. (CVE-2011-1598, CVE-2011-1748)

Vasiliy Kulikov discovered that the AGP driver did not check certain
ioctl values. A local attacker with access to the video subsystem
could exploit this to crash the system, leading to a denial of
service, or possibly gain root privileges. (CVE-2011-1745,
CVE-2011-2022)

Vasiliy Kulikov discovered that the AGP driver did not check the size
of certain memory allocations. A local attacker with access to the
video subsystem could exploit this to run the system out of memory,
leading to a denial of service. (CVE-2011-1746).

Note that Tenable Network Security has extracted the preceding
description block directly from the Ubuntu security advisory. Tenable
has attempted to automatically clean and format it as much as possible
without introducing additional issues.

Solution :

Update the affected packages.

Risk factor :

High / CVSS Base Score : 7.8
(CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C)
CVSS Temporal Score : 6.1
(CVSS2#E:POC/RL:OF/RC:C)
Public Exploit Available : true

Ready to Scan Unlimited IPs & Run Compliance Checks?

Upgrade to Nessus Professional today!

Buy Now

Combine the Power of Nessus with the Ease of Cloud

Start your free Nessus Cloud trial now!

Begin Free Trial