Ubuntu 10.04 LTS : linux, linux-ec2 vulnerabilities (USN-1141-1)

Ubuntu Security Notice (C) 2011-2014 Canonical, Inc. / NASL script (C) 2011-2014 Tenable Network Security, Inc.


Synopsis :

The remote Ubuntu host is missing one or more security-related patches.

Description :

Brad Spengler discovered that the kernel did not correctly account for
userspace memory allocations during exec() calls. A local attacker
could exploit this to consume all system memory, leading to a denial
of service. (CVE-2010-4243)

Alexander Duyck discovered that the Intel Gigabit Ethernet driver did
not correctly handle certain configurations. If such a device was
configured without VLANs, a remote attacker could crash the system,
leading to a denial of service. (CVE-2010-4263)

Nelson Elhage discovered that Econet did not correctly handle AUN
packets over UDP. A local attacker could send specially crafted
traffic to crash the system, leading to a denial of service.
(CVE-2010-4342)

Dan Rosenberg discovered that IRDA did not correctly check the size of
buffers. On non-x86 systems, a local attacker could exploit this to
read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529)

Dan Rosenburg discovered that the CAN subsystem leaked kernel
addresses into the /proc filesystem. A local attacker could use this
to increase the chances of a successful memory corruption exploit.
(CVE-2010-4565)

Kees Cook discovered that the IOWarrior USB device driver did not
correctly check certain size fields. A local attacker with physical
access could plug in a specially crafted USB device to crash the
system or potentially gain root privileges. (CVE-2010-4656)

Goldwyn Rodrigues discovered that the OCFS2 filesystem did not
correctly clear memory when writing certain file holes. A local
attacker could exploit this to read uninitialized data from the disk,
leading to a loss of privacy. (CVE-2011-0463)

Dan Carpenter discovered that the TTPCI DVB driver did not check
certain values during an ioctl. If the dvb-ttpci module was loaded, a
local attacker could exploit this to crash the system, leading to a
denial of service, or possibly gain root privileges. (CVE-2011-0521)

Jens Kuehnel discovered that the InfiniBand driver contained a race
condition. On systems using InfiniBand, a local attacker could send
specially crafted requests to crash the system, leading to a denial of
service. (CVE-2011-0695)

Dan Rosenberg discovered that XFS did not correctly initialize memory.
A local attacker could make crafted ioctl calls to leak portions of
kernel stack memory, leading to a loss of privacy. (CVE-2011-0711)

Rafael Dominguez Vega discovered that the caiaq Native Instruments USB
driver did not correctly validate string lengths. A local attacker
with physical access could plug in a specially crafted USB device to
crash the system or potentially gain root privileges. (CVE-2011-0712)

Kees Cook reported that /proc/pid/stat did not correctly filter
certain memory locations. A local attacker could determine the memory
layout of processes in an attempt to increase the chances of a
successful memory corruption exploit. (CVE-2011-0726)

Timo Warns discovered that MAC partition parsing routines did not
correctly calculate block counts. A local attacker with physical
access could plug in a specially crafted block device to crash the
system or potentially gain root privileges. (CVE-2011-1010)

Timo Warns discovered that LDM partition parsing routines did not
correctly calculate block counts. A local attacker with physical
access could plug in a specially crafted block device to crash the
system, leading to a denial of service. (CVE-2011-1012)

Matthiew Herrb discovered that the drm modeset interface did not
correctly handle a signed comparison. A local attacker could exploit
this to crash the system or possibly gain root privileges.
(CVE-2011-1013)

Marek Olšák discovered that the Radeon GPU drivers did not correctly
validate certain registers. On systems with specific hardware, a local
attacker could exploit this to write to arbitrary video memory.
(CVE-2011-1016)

Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not
needed to load kernel modules. A local attacker with the CAP_NET_ADMIN
capability could load existing kernel modules, possibly increasing the
attack surface available on the system. (CVE-2011-1019)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
clear memory. A local attacker could exploit this to read kernel stack
memory, leading to a loss of privacy. (CVE-2011-1078)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
check that device name strings were NULL terminated. A local attacker
could exploit this to crash the system, leading to a denial of
service, or leak contents of kernel stack memory, leading to a loss of
privacy. (CVE-2011-1079)

Vasiliy Kulikov discovered that bridge network filtering did not check
that name fields were NULL terminated. A local attacker could exploit
this to leak contents of kernel stack memory, leading to a loss of
privacy. (CVE-2011-1080)

Nelson Elhage discovered that the epoll subsystem did not correctly
handle certain structures. A local attacker could create malicious
requests that would hang the system, leading to a denial of service.
(CVE-2011-1082)

Johan Hovold discovered that the DCCP network stack did not correctly
handle certain packet combinations. A remote attacker could send
specially crafted network traffic that would crash the system, leading
to a denial of service. (CVE-2011-1093)

Peter Huewe discovered that the TPM device did not correctly
initialize memory. A local attacker could exploit this to read kernel
heap memory contents, leading to a loss of privacy. (CVE-2011-1160)

Vasiliy Kulikov discovered that the netfilter code did not check
certain strings copied from userspace. A local attacker with netfilter
access could exploit this to read kernel memory or crash the system,
leading to a denial of service. (CVE-2011-1170, CVE-2011-1171,
CVE-2011-1172, CVE-2011-2534)

Vasiliy Kulikov discovered that the Acorn Universal Networking driver
did not correctly initialize memory. A remote attacker could send
specially crafted traffic to read kernel stack memory, leading to a
loss of privacy. (CVE-2011-1173)

Dan Rosenberg discovered that the IRDA subsystem did not correctly
check certain field sizes. If a system was using IRDA, a remote
attacker could send specially crafted traffic to crash the system or
gain root privileges. (CVE-2011-1180)

Julien Tinnes discovered that the kernel did not correctly validate
the signal structure from tkill(). A local attacker could exploit this
to send signals to arbitrary threads, possibly bypassing expected
restrictions. (CVE-2011-1182)

Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI
interface. A local attacker on non-x86 systems might be able to cause
a denial of service. (CVE-2011-1476)

Dan Rosenberg reported errors in the kernel's OSS (Open Sound System)
driver for Yamaha FM synthesizer chips. A local user can exploit this
to cause memory corruption, causing a denial of service or privilege
escalation. (CVE-2011-1477)

Ryan Sweat discovered that the GRO code did not correctly validate
memory. In some configurations on systems using VLANs, a remote
attacker could send specially crafted traffic to crash the system,
leading to a denial of service. (CVE-2011-1478)

It was discovered that the Stream Control Transmission Protocol (SCTP)
implementation incorrectly calculated lengths. If the
net.sctp.addip_enable variable was turned on, a remote attacker could
send specially crafted traffic to crash the system. (CVE-2011-1573)

A flaw was found in the b43 driver in the Linux kernel. An attacker
could use this flaw to cause a denial of service if the system has an
active wireless interface using the b43 driver. (CVE-2011-3359)

Maynard Johnson discovered that on POWER7, certain speculative events
may raise a performance monitor exception. A local attacker could
exploit this to crash the system, leading to a denial of service.
(CVE-2011-4611)

Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used
by amateur radio. A local user or a remote user on an X.25 network
could exploit these flaws to execute arbitrary code as root.
(CVE-2011-4913).

Solution :

Update the affected packages.

Risk factor :

High / CVSS Base Score : 7.8
(CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C)
CVSS Temporal Score : 6.8
(CVSS2#E:ND/RL:OF/RC:C)
Public Exploit Available : true